Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Balmer
2
70 kgPetrucci
3
56 kgBenedetti
4
63 kgFrigo
5
70 kgHollyman
6
59 kgZambanini
7
62 kgTiberi
9
62 kgPiccolo
10
64 kgCiuccarelli
11
55 kgBaudin
12
64 kgBaroncini
14
74 kgFancellu
19
62 kgAcco
23
69 kgRaimondi
24
60 kgPattyn
25
63 kgSpadini
26
62 kgMacleod
31
57 kgSyritsa
34
85 kgCharrin
36
67 kgBonaldo
37
68 kg
2
70 kgPetrucci
3
56 kgBenedetti
4
63 kgFrigo
5
70 kgHollyman
6
59 kgZambanini
7
62 kgTiberi
9
62 kgPiccolo
10
64 kgCiuccarelli
11
55 kgBaudin
12
64 kgBaroncini
14
74 kgFancellu
19
62 kgAcco
23
69 kgRaimondi
24
60 kgPattyn
25
63 kgSpadini
26
62 kgMacleod
31
57 kgSyritsa
34
85 kgCharrin
36
67 kgBonaldo
37
68 kg
Weight (KG) →
Result →
85
55
2
37
# | Rider | Weight (KG) |
---|---|---|
2 | BALMER Alexandre | 70 |
3 | PETRUCCI Mattia | 56 |
4 | BENEDETTI Gabriele | 63 |
5 | FRIGO Marco | 70 |
6 | HOLLYMAN Mason | 59 |
7 | ZAMBANINI Edoardo | 62 |
9 | TIBERI Antonio | 62 |
10 | PICCOLO Andrea | 64 |
11 | CIUCCARELLI Riccardo | 55 |
12 | BAUDIN Alex | 64 |
14 | BARONCINI Filippo | 74 |
19 | FANCELLU Alessandro | 62 |
23 | ACCO Alessio | 69 |
24 | RAIMONDI Alex | 60 |
25 | PATTYN Steven | 63 |
26 | SPADINI Enrico | 62 |
31 | MACLEOD Callum | 57 |
34 | SYRITSA Gleb | 85 |
36 | CHARRIN Aloïs | 67 |
37 | BONALDO Kevin | 68 |