Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 119
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Kvist
1
68 kgSmukulis
2
72 kgDenifl
3
65 kgJarc
4
87 kgHesselbarth
5
65 kgKritskiy
6
81 kgModolo
7
67 kgWalsleben
16
66 kgOss
17
75 kgStauff
21
82 kgKittel
22
82 kgEdmüller
23
70 kgPfingsten
25
69 kgMalacarne
27
63 kgJanorschke
39
78 kgKreder
55
67 kgThurau
66
73 kgZoidl
67
63 kgGretsch
82
69 kgSteensen
91
65 kgPirazzi
121
62 kgForke
122
78 kg
1
68 kgSmukulis
2
72 kgDenifl
3
65 kgJarc
4
87 kgHesselbarth
5
65 kgKritskiy
6
81 kgModolo
7
67 kgWalsleben
16
66 kgOss
17
75 kgStauff
21
82 kgKittel
22
82 kgEdmüller
23
70 kgPfingsten
25
69 kgMalacarne
27
63 kgJanorschke
39
78 kgKreder
55
67 kgThurau
66
73 kgZoidl
67
63 kgGretsch
82
69 kgSteensen
91
65 kgPirazzi
121
62 kgForke
122
78 kg
Weight (KG) →
Result →
87
62
1
122
# | Rider | Weight (KG) |
---|---|---|
1 | KVIST Thomas Vedel | 68 |
2 | SMUKULIS Gatis | 72 |
3 | DENIFL Stefan | 65 |
4 | JARC Blaž | 87 |
5 | HESSELBARTH David | 65 |
6 | KRITSKIY Timofey | 81 |
7 | MODOLO Sacha | 67 |
16 | WALSLEBEN Philipp | 66 |
17 | OSS Daniel | 75 |
21 | STAUFF Andreas | 82 |
22 | KITTEL Marcel | 82 |
23 | EDMÜLLER Benjamin | 70 |
25 | PFINGSTEN Christoph | 69 |
27 | MALACARNE Davide | 63 |
39 | JANORSCHKE Grischa | 78 |
55 | KREDER Michel | 67 |
66 | THURAU Björn | 73 |
67 | ZOIDL Riccardo | 63 |
82 | GRETSCH Patrick | 69 |
91 | STEENSEN André | 65 |
121 | PIRAZZI Stefano | 62 |
122 | FORKE Sebastian | 78 |