Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 26
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Gretsch
1
69 kgMalacarne
3
63 kgKittel
4
82 kgSteensen
5
65 kgSmukulis
6
72 kgDenifl
8
65 kgKvist
12
68 kgPfingsten
15
69 kgStauff
19
82 kgOss
20
75 kgWalsleben
21
66 kgKritskiy
22
81 kgHesselbarth
23
65 kgPirazzi
36
62 kgJarc
45
87 kgJanorschke
47
78 kgKreder
48
67 kgThurau
50
73 kgEdmüller
53
70 kgForke
61
78 kgModolo
65
67 kgZoidl
86
63 kg
1
69 kgMalacarne
3
63 kgKittel
4
82 kgSteensen
5
65 kgSmukulis
6
72 kgDenifl
8
65 kgKvist
12
68 kgPfingsten
15
69 kgStauff
19
82 kgOss
20
75 kgWalsleben
21
66 kgKritskiy
22
81 kgHesselbarth
23
65 kgPirazzi
36
62 kgJarc
45
87 kgJanorschke
47
78 kgKreder
48
67 kgThurau
50
73 kgEdmüller
53
70 kgForke
61
78 kgModolo
65
67 kgZoidl
86
63 kg
Weight (KG) →
Result →
87
62
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | GRETSCH Patrick | 69 |
3 | MALACARNE Davide | 63 |
4 | KITTEL Marcel | 82 |
5 | STEENSEN André | 65 |
6 | SMUKULIS Gatis | 72 |
8 | DENIFL Stefan | 65 |
12 | KVIST Thomas Vedel | 68 |
15 | PFINGSTEN Christoph | 69 |
19 | STAUFF Andreas | 82 |
20 | OSS Daniel | 75 |
21 | WALSLEBEN Philipp | 66 |
22 | KRITSKIY Timofey | 81 |
23 | HESSELBARTH David | 65 |
36 | PIRAZZI Stefano | 62 |
45 | JARC Blaž | 87 |
47 | JANORSCHKE Grischa | 78 |
48 | KREDER Michel | 67 |
50 | THURAU Björn | 73 |
53 | EDMÜLLER Benjamin | 70 |
61 | FORKE Sebastian | 78 |
65 | MODOLO Sacha | 67 |
86 | ZOIDL Riccardo | 63 |