Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 80
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Steensen
1
65 kgKittel
4
82 kgKreder
7
67 kgKritskiy
8
81 kgDenifl
13
65 kgHesselbarth
14
65 kgWalsleben
15
66 kgJarc
19
87 kgThurau
21
73 kgJanorschke
22
78 kgOss
29
75 kgMalacarne
31
63 kgPfingsten
43
69 kgSmukulis
56
72 kgKvist
60
68 kgGretsch
62
69 kgZoidl
79
63 kgEdmüller
81
70 kgStauff
87
82 kgPirazzi
91
62 kgModolo
105
67 kgForke
109
78 kg
1
65 kgKittel
4
82 kgKreder
7
67 kgKritskiy
8
81 kgDenifl
13
65 kgHesselbarth
14
65 kgWalsleben
15
66 kgJarc
19
87 kgThurau
21
73 kgJanorschke
22
78 kgOss
29
75 kgMalacarne
31
63 kgPfingsten
43
69 kgSmukulis
56
72 kgKvist
60
68 kgGretsch
62
69 kgZoidl
79
63 kgEdmüller
81
70 kgStauff
87
82 kgPirazzi
91
62 kgModolo
105
67 kgForke
109
78 kg
Weight (KG) →
Result →
87
62
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | STEENSEN André | 65 |
4 | KITTEL Marcel | 82 |
7 | KREDER Michel | 67 |
8 | KRITSKIY Timofey | 81 |
13 | DENIFL Stefan | 65 |
14 | HESSELBARTH David | 65 |
15 | WALSLEBEN Philipp | 66 |
19 | JARC Blaž | 87 |
21 | THURAU Björn | 73 |
22 | JANORSCHKE Grischa | 78 |
29 | OSS Daniel | 75 |
31 | MALACARNE Davide | 63 |
43 | PFINGSTEN Christoph | 69 |
56 | SMUKULIS Gatis | 72 |
60 | KVIST Thomas Vedel | 68 |
62 | GRETSCH Patrick | 69 |
79 | ZOIDL Riccardo | 63 |
81 | EDMÜLLER Benjamin | 70 |
87 | STAUFF Andreas | 82 |
91 | PIRAZZI Stefano | 62 |
105 | MODOLO Sacha | 67 |
109 | FORKE Sebastian | 78 |