Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 16
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Commesso
1
66 kgSacchi
2
68 kgTosatto
3
74 kgFerrari
5
74 kgMazzanti
6
64 kgMarzoli
7
61 kgGiunti
8
62 kgBaliani
10
66 kgZucconi
13
63 kgDi Grande
14
58 kgMori
15
77 kgDi Luca
16
61 kgPetito
22
78 kgTiralongo
23
63 kgMasciarelli
24
63 kgBramati
25
72 kgCelestino
28
67 kgOngarato
29
69 kgCunego
30
58 kgBertagnolli
32
63 kgSimeoni
33
68 kgEvans
38
64 kgHulsmans
40
75 kg
1
66 kgSacchi
2
68 kgTosatto
3
74 kgFerrari
5
74 kgMazzanti
6
64 kgMarzoli
7
61 kgGiunti
8
62 kgBaliani
10
66 kgZucconi
13
63 kgDi Grande
14
58 kgMori
15
77 kgDi Luca
16
61 kgPetito
22
78 kgTiralongo
23
63 kgMasciarelli
24
63 kgBramati
25
72 kgCelestino
28
67 kgOngarato
29
69 kgCunego
30
58 kgBertagnolli
32
63 kgSimeoni
33
68 kgEvans
38
64 kgHulsmans
40
75 kg
Weight (KG) →
Result →
78
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | COMMESSO Salvatore | 66 |
2 | SACCHI Fabio | 68 |
3 | TOSATTO Matteo | 74 |
5 | FERRARI Diego | 74 |
6 | MAZZANTI Luca | 64 |
7 | MARZOLI Ruggero | 61 |
8 | GIUNTI Massimo | 62 |
10 | BALIANI Fortunato | 66 |
13 | ZUCCONI Pietro | 63 |
14 | DI GRANDE Giuseppe | 58 |
15 | MORI Massimiliano | 77 |
16 | DI LUCA Danilo | 61 |
22 | PETITO Roberto | 78 |
23 | TIRALONGO Paolo | 63 |
24 | MASCIARELLI Simone | 63 |
25 | BRAMATI Davide | 72 |
28 | CELESTINO Mirko | 67 |
29 | ONGARATO Alberto | 69 |
30 | CUNEGO Damiano | 58 |
32 | BERTAGNOLLI Leonardo | 63 |
33 | SIMEONI Filippo | 68 |
38 | EVANS Cadel | 64 |
40 | HULSMANS Kevin | 75 |