Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kump
1
68 kgCanola
3
66 kgZardini
4
62 kgRogina
6
70 kgFacchini
7
70 kgVrečer
8
68 kgPapok
11
76 kgAgostini
12
62 kgTratnik
14
67 kgKönig
15
62 kgGawroński
22
73 kgPasqualon
23
75 kgKrizek
26
74 kgOwsian
30
66 kgMarin
31
67 kgĐurasek
36
56 kgBulgarelli
38
69 kgMurn
41
70 kgMahorič
42
68 kgBajc
44
65 kgAndriato
47
67 kgPagani
48
68 kgTybor
68
72 kg
1
68 kgCanola
3
66 kgZardini
4
62 kgRogina
6
70 kgFacchini
7
70 kgVrečer
8
68 kgPapok
11
76 kgAgostini
12
62 kgTratnik
14
67 kgKönig
15
62 kgGawroński
22
73 kgPasqualon
23
75 kgKrizek
26
74 kgOwsian
30
66 kgMarin
31
67 kgĐurasek
36
56 kgBulgarelli
38
69 kgMurn
41
70 kgMahorič
42
68 kgBajc
44
65 kgAndriato
47
67 kgPagani
48
68 kgTybor
68
72 kg
Weight (KG) →
Result →
76
56
1
68
# | Rider | Weight (KG) |
---|---|---|
1 | KUMP Marko | 68 |
3 | CANOLA Marco | 66 |
4 | ZARDINI Edoardo | 62 |
6 | ROGINA Radoslav | 70 |
7 | FACCHINI Patrick | 70 |
8 | VREČER Robert | 68 |
11 | PAPOK Siarhei | 76 |
12 | AGOSTINI Stefano | 62 |
14 | TRATNIK Jan | 67 |
15 | KÖNIG Leopold | 62 |
22 | GAWROŃSKI Piotr | 73 |
23 | PASQUALON Andrea | 75 |
26 | KRIZEK Matthias | 74 |
30 | OWSIAN Łukasz | 66 |
31 | MARIN Matej | 67 |
36 | ĐURASEK Kristijan | 56 |
38 | BULGARELLI Otavio | 69 |
41 | MURN Uroš | 70 |
42 | MAHORIČ Mitja | 68 |
44 | BAJC Andi | 65 |
47 | ANDRIATO Rafael | 67 |
48 | PAGANI Angelo | 68 |
68 | TYBOR Patrik | 72 |