Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Babor
1
79 kgGrosu
2
68 kgCarstensen
3
69 kgDalla Valle
4
73 kgBanaszek
5
75 kgMcGeough
7
76 kgSchuran
8
70 kgMalucelli
9
68 kgHeming
12
68 kgRaileanu
14
63 kgMudgway
15
65 kgGate
16
71 kgŠtoček
17
80 kgZambelli
18
70 kgMurias
20
65 kgRasch
21
71 kgSexton
22
71 kgMalnasi
23
74 kgPawlak
24
81 kg
1
79 kgGrosu
2
68 kgCarstensen
3
69 kgDalla Valle
4
73 kgBanaszek
5
75 kgMcGeough
7
76 kgSchuran
8
70 kgMalucelli
9
68 kgHeming
12
68 kgRaileanu
14
63 kgMudgway
15
65 kgGate
16
71 kgŠtoček
17
80 kgZambelli
18
70 kgMurias
20
65 kgRasch
21
71 kgSexton
22
71 kgMalnasi
23
74 kgPawlak
24
81 kg
Weight (KG) →
Result →
81
63
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BABOR Daniel | 79 |
2 | GROSU Eduard-Michael | 68 |
3 | CARSTENSEN Lucas | 69 |
4 | DALLA VALLE Nicolas | 73 |
5 | BANASZEK Alan | 75 |
7 | MCGEOUGH Cormac | 76 |
8 | SCHURAN Michal | 70 |
9 | MALUCELLI Matteo | 68 |
12 | HEMING Miká | 68 |
14 | RAILEANU Cristian | 63 |
15 | MUDGWAY Luke | 65 |
16 | GATE Aaron | 71 |
17 | ŠTOČEK Matúš | 80 |
18 | ZAMBELLI Samuele | 70 |
20 | MURIAS Jakub | 65 |
21 | RASCH Jesper | 71 |
22 | SEXTON Tom | 71 |
23 | MALNASI Jozsef-Attila | 74 |
24 | PAWLAK Tobiasz | 81 |