Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Grosu
1
68 kgBabor
2
79 kgDalla Valle
3
73 kgBanaszek
4
75 kgCarstensen
6
69 kgMalucelli
8
68 kgMcGeough
9
76 kgSchuran
10
70 kgHeming
11
68 kgMurias
12
65 kgBudziński
13
69 kgRaileanu
14
63 kgSexton
18
71 kgMudgway
19
65 kgClarke
20
68 kgŠtoček
21
80 kgGate
23
71 kgZambelli
24
70 kgRasch
27
71 kgMalnasi
28
74 kgPawlak
29
81 kg
1
68 kgBabor
2
79 kgDalla Valle
3
73 kgBanaszek
4
75 kgCarstensen
6
69 kgMalucelli
8
68 kgMcGeough
9
76 kgSchuran
10
70 kgHeming
11
68 kgMurias
12
65 kgBudziński
13
69 kgRaileanu
14
63 kgSexton
18
71 kgMudgway
19
65 kgClarke
20
68 kgŠtoček
21
80 kgGate
23
71 kgZambelli
24
70 kgRasch
27
71 kgMalnasi
28
74 kgPawlak
29
81 kg
Weight (KG) →
Result →
81
63
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | GROSU Eduard-Michael | 68 |
2 | BABOR Daniel | 79 |
3 | DALLA VALLE Nicolas | 73 |
4 | BANASZEK Alan | 75 |
6 | CARSTENSEN Lucas | 69 |
8 | MALUCELLI Matteo | 68 |
9 | MCGEOUGH Cormac | 76 |
10 | SCHURAN Michal | 70 |
11 | HEMING Miká | 68 |
12 | MURIAS Jakub | 65 |
13 | BUDZIŃSKI Tomasz | 69 |
14 | RAILEANU Cristian | 63 |
18 | SEXTON Tom | 71 |
19 | MUDGWAY Luke | 65 |
20 | CLARKE Jonathan | 68 |
21 | ŠTOČEK Matúš | 80 |
23 | GATE Aaron | 71 |
24 | ZAMBELLI Samuele | 70 |
27 | RASCH Jesper | 71 |
28 | MALNASI Jozsef-Attila | 74 |
29 | PAWLAK Tobiasz | 81 |