Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Tuft
1
77 kgMcCarty
2
68 kgBorrajo
3
76 kgDowning
4
64 kgVogels
12
75 kgEuser
14
56 kgStewart
17
72 kgHanson
20
74 kgRollin
23
83 kgFrattini
24
63 kgBazzana
25
63.5 kgStević
27
66 kgDomínguez
28
72 kgvan Garderen
30
72 kgMcCann
40
73 kgDuggan
42
60 kgWohlberg
45
63 kgChadwick
47
75 kgLewis
49
65 kgRoth
50
70 kg
1
77 kgMcCarty
2
68 kgBorrajo
3
76 kgDowning
4
64 kgVogels
12
75 kgEuser
14
56 kgStewart
17
72 kgHanson
20
74 kgRollin
23
83 kgFrattini
24
63 kgBazzana
25
63.5 kgStević
27
66 kgDomínguez
28
72 kgvan Garderen
30
72 kgMcCann
40
73 kgDuggan
42
60 kgWohlberg
45
63 kgChadwick
47
75 kgLewis
49
65 kgRoth
50
70 kg
Weight (KG) →
Result →
83
56
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | TUFT Svein | 77 |
2 | MCCARTY Jonathan Patrick | 68 |
3 | BORRAJO Alejandro Alberto | 76 |
4 | DOWNING Russell | 64 |
12 | VOGELS Henk | 75 |
14 | EUSER Lucas | 56 |
17 | STEWART Jackson | 72 |
20 | HANSON Ken | 74 |
23 | ROLLIN Dominique | 83 |
24 | FRATTINI Davide | 63 |
25 | BAZZANA Alessandro | 63.5 |
27 | STEVIĆ Ivan | 66 |
28 | DOMÍNGUEZ Iván | 72 |
30 | VAN GARDEREN Tejay | 72 |
40 | MCCANN David | 73 |
42 | DUGGAN Timothy | 60 |
45 | WOHLBERG Eric | 63 |
47 | CHADWICK Glen Alan | 75 |
49 | LEWIS Craig | 65 |
50 | ROTH Ryan | 70 |