Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Philipsen
1
75 kgStrakhov
2
70 kgCavendish
3
70 kgBennett
4
73 kgAckermann
5
78 kgViviani
6
67 kgDémare
7
76 kgKooij
8
72 kgLiepiņš
9
67 kgKukrle
10
73 kgTonelli
11
64 kgGroenewegen
12
70 kgKochetkov
13
70 kgVervloesem
14
65 kgDevriendt
15
70 kgMalucelli
16
68 kgKanter
17
68 kgSchwarzmann
18
69 kgvan den Berg
19
73 kgBissegger
20
78 kgThwaites
22
71 kg
1
75 kgStrakhov
2
70 kgCavendish
3
70 kgBennett
4
73 kgAckermann
5
78 kgViviani
6
67 kgDémare
7
76 kgKooij
8
72 kgLiepiņš
9
67 kgKukrle
10
73 kgTonelli
11
64 kgGroenewegen
12
70 kgKochetkov
13
70 kgVervloesem
14
65 kgDevriendt
15
70 kgMalucelli
16
68 kgKanter
17
68 kgSchwarzmann
18
69 kgvan den Berg
19
73 kgBissegger
20
78 kgThwaites
22
71 kg
Weight (KG) →
Result →
78
64
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | PHILIPSEN Jasper | 75 |
2 | STRAKHOV Dmitry | 70 |
3 | CAVENDISH Mark | 70 |
4 | BENNETT Sam | 73 |
5 | ACKERMANN Pascal | 78 |
6 | VIVIANI Elia | 67 |
7 | DÉMARE Arnaud | 76 |
8 | KOOIJ Olav | 72 |
9 | LIEPIŅŠ Emīls | 67 |
10 | KUKRLE Michael | 73 |
11 | TONELLI Alessandro | 64 |
12 | GROENEWEGEN Dylan | 70 |
13 | KOCHETKOV Pavel | 70 |
14 | VERVLOESEM Xandres | 65 |
15 | DEVRIENDT Tom | 70 |
16 | MALUCELLI Matteo | 68 |
17 | KANTER Max | 68 |
18 | SCHWARZMANN Michael | 69 |
19 | VAN DEN BERG Marijn | 73 |
20 | BISSEGGER Stefan | 78 |
22 | THWAITES Scott | 71 |