Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Plapp
1
72 kgEvenepoel
2
63 kgRubio
3
56 kgMerlier
4
76 kgPlanckaert
5
71 kgArndt
6
77.5 kgEwan
7
69 kgYates
8
58 kgCavendish
9
70 kgLutsenko
10
74 kgKooij
11
72 kgBilbao
12
60 kgLazkano
13
74 kgLucca
15
74 kgVanhoucke
16
65 kgBauhaus
17
75 kgGloag
18
60 kgLeknessund
19
72 kgKuss
20
61 kgZwiehoff
21
61 kgTarling
22
78 kgBol
23
83 kg
1
72 kgEvenepoel
2
63 kgRubio
3
56 kgMerlier
4
76 kgPlanckaert
5
71 kgArndt
6
77.5 kgEwan
7
69 kgYates
8
58 kgCavendish
9
70 kgLutsenko
10
74 kgKooij
11
72 kgBilbao
12
60 kgLazkano
13
74 kgLucca
15
74 kgVanhoucke
16
65 kgBauhaus
17
75 kgGloag
18
60 kgLeknessund
19
72 kgKuss
20
61 kgZwiehoff
21
61 kgTarling
22
78 kgBol
23
83 kg
Weight (KG) →
Result →
83
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | PLAPP Luke | 72 |
2 | EVENEPOEL Remco | 63 |
3 | RUBIO Einer | 56 |
4 | MERLIER Tim | 76 |
5 | PLANCKAERT Edward | 71 |
6 | ARNDT Nikias | 77.5 |
7 | EWAN Caleb | 69 |
8 | YATES Adam | 58 |
9 | CAVENDISH Mark | 70 |
10 | LUTSENKO Alexey | 74 |
11 | KOOIJ Olav | 72 |
12 | BILBAO Pello | 60 |
13 | LAZKANO Oier | 74 |
15 | LUCCA Riccardo | 74 |
16 | VANHOUCKE Harm | 65 |
17 | BAUHAUS Phil | 75 |
18 | GLOAG Thomas | 60 |
19 | LEKNESSUND Andreas | 72 |
20 | KUSS Sepp | 61 |
21 | ZWIEHOFF Ben | 61 |
22 | TARLING Joshua | 78 |
23 | BOL Cees | 83 |