Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Affini
1
80 kgKüng
2
83 kgCattaneo
3
67 kgHoole
4
81 kgArensman
5
68 kgCampenaerts
6
68 kgPolitt
7
80 kgAsgreen
8
75 kgWærenskjold
9
92 kgWalscheid
10
90 kgBjerg
11
78 kgBissegger
12
78 kgGarcía Pierna
13
67 kgKirsch
14
78 kgOliveira
15
68 kgMaciejuk
16
78 kgVercouillie
17
66 kgKluckers
18
71 kgIlić
19
86 kgMiltiadis
20
74 kgPelikán
21
76 kgStoynev
24
95 kgKmieliauskas
25
68 kg
1
80 kgKüng
2
83 kgCattaneo
3
67 kgHoole
4
81 kgArensman
5
68 kgCampenaerts
6
68 kgPolitt
7
80 kgAsgreen
8
75 kgWærenskjold
9
92 kgWalscheid
10
90 kgBjerg
11
78 kgBissegger
12
78 kgGarcía Pierna
13
67 kgKirsch
14
78 kgOliveira
15
68 kgMaciejuk
16
78 kgVercouillie
17
66 kgKluckers
18
71 kgIlić
19
86 kgMiltiadis
20
74 kgPelikán
21
76 kgStoynev
24
95 kgKmieliauskas
25
68 kg
Weight (KG) →
Result →
95
66
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | AFFINI Edoardo | 80 |
2 | KÜNG Stefan | 83 |
3 | CATTANEO Mattia | 67 |
4 | HOOLE Daan | 81 |
5 | ARENSMAN Thymen | 68 |
6 | CAMPENAERTS Victor | 68 |
7 | POLITT Nils | 80 |
8 | ASGREEN Kasper | 75 |
9 | WÆRENSKJOLD Søren | 92 |
10 | WALSCHEID Max | 90 |
11 | BJERG Mikkel | 78 |
12 | BISSEGGER Stefan | 78 |
13 | GARCÍA PIERNA Raúl | 67 |
14 | KIRSCH Alex | 78 |
15 | OLIVEIRA Ivo | 68 |
16 | MACIEJUK Filip | 78 |
17 | VERCOUILLIE Victor | 66 |
18 | KLUCKERS Arthur | 71 |
19 | ILIĆ Ognjen | 86 |
20 | MILTIADIS Andreas | 74 |
21 | PELIKÁN János | 76 |
24 | STOYNEV Emil | 95 |
25 | KMIELIAUSKAS Rokas | 68 |