Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Sagan
1
78 kgVan Avermaet
2
74 kgFrank
3
64 kgvan Garderen
4
72 kgMorton
5
62 kgReijnen
6
63 kgLewis
8
65 kgCaruso
9
67 kgDanielson
10
58.5 kgGallopin
11
69 kgCraddock
12
69 kgLemus
13
61 kgSchär
14
78 kgAtapuma
15
59 kgSutherland
16
75 kgSchleck
17
68 kgEuser
18
56 kgBennett
21
58 kgMillar
22
79 kgTalansky
23
63 kg
1
78 kgVan Avermaet
2
74 kgFrank
3
64 kgvan Garderen
4
72 kgMorton
5
62 kgReijnen
6
63 kgLewis
8
65 kgCaruso
9
67 kgDanielson
10
58.5 kgGallopin
11
69 kgCraddock
12
69 kgLemus
13
61 kgSchär
14
78 kgAtapuma
15
59 kgSutherland
16
75 kgSchleck
17
68 kgEuser
18
56 kgBennett
21
58 kgMillar
22
79 kgTalansky
23
63 kg
Weight (KG) →
Result →
79
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | SAGAN Peter | 78 |
2 | VAN AVERMAET Greg | 74 |
3 | FRANK Mathias | 64 |
4 | VAN GARDEREN Tejay | 72 |
5 | MORTON Lachlan | 62 |
6 | REIJNEN Kiel | 63 |
8 | LEWIS Craig | 65 |
9 | CARUSO Damiano | 67 |
10 | DANIELSON Tom | 58.5 |
11 | GALLOPIN Tony | 69 |
12 | CRADDOCK Lawson | 69 |
13 | LEMUS Luis | 61 |
14 | SCHÄR Michael | 78 |
15 | ATAPUMA Darwin | 59 |
16 | SUTHERLAND Rory | 75 |
17 | SCHLECK Andy | 68 |
18 | EUSER Lucas | 56 |
21 | BENNETT George | 58 |
22 | MILLAR David | 79 |
23 | TALANSKY Andrew | 63 |