Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Reijnen
1
63 kgPhinney
2
82 kgBookwalter
3
70 kgDennis
4
72 kgAnderson
5
66 kgOwen
6
67 kgArredondo
7
58 kgZepuntke
8
76 kgJaramillo
9
63 kgMannion
10
58 kgMurphy
11
67 kgHernández Blázquez
12
58 kgBrown
13
65 kgBoivin
14
78 kgSkujiņš
16
70 kgSmith
17
67 kgRovny
18
62 kgOram
19
68 kgDaniel
20
64 kgMolina
22
57 kgCanola
23
66 kgDidier
24
68 kgCaruso
26
67 kg
1
63 kgPhinney
2
82 kgBookwalter
3
70 kgDennis
4
72 kgAnderson
5
66 kgOwen
6
67 kgArredondo
7
58 kgZepuntke
8
76 kgJaramillo
9
63 kgMannion
10
58 kgMurphy
11
67 kgHernández Blázquez
12
58 kgBrown
13
65 kgBoivin
14
78 kgSkujiņš
16
70 kgSmith
17
67 kgRovny
18
62 kgOram
19
68 kgDaniel
20
64 kgMolina
22
57 kgCanola
23
66 kgDidier
24
68 kgCaruso
26
67 kg
Weight (KG) →
Result →
82
57
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | REIJNEN Kiel | 63 |
2 | PHINNEY Taylor | 82 |
3 | BOOKWALTER Brent | 70 |
4 | DENNIS Rohan | 72 |
5 | ANDERSON Ryan | 66 |
6 | OWEN Logan | 67 |
7 | ARREDONDO Julián David | 58 |
8 | ZEPUNTKE Ruben | 76 |
9 | JARAMILLO Daniel | 63 |
10 | MANNION Gavin | 58 |
11 | MURPHY Kyle | 67 |
12 | HERNÁNDEZ BLÁZQUEZ Jesús | 58 |
13 | BROWN Nathan | 65 |
14 | BOIVIN Guillaume | 78 |
16 | SKUJIŅŠ Toms | 70 |
17 | SMITH Dion | 67 |
18 | ROVNY Ivan | 62 |
19 | ORAM James | 68 |
20 | DANIEL Gregory | 64 |
22 | MOLINA Antonio | 57 |
23 | CANOLA Marco | 66 |
24 | DIDIER Laurent | 68 |
26 | CARUSO Damiano | 67 |