Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 93
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Andresen
1
69 kgKovar
4
65 kgOioli
5
65 kgRomele
8
71 kgWang
10
70 kgMaček
20
73 kgMarbler
23
75 kgŠiroký
24
80 kgKovač
27
65 kgKjeldsen
28
69 kgĆatović
29
62 kgLube
34
63 kgKretschy
40
63 kgLond
48
65 kgHribar
49
60 kgPiskule
50
56 kgRosenlund
51
72 kgCvjetičanin
55
75 kgObdržálek
57
65 kgDivnić
60
64 kgPiciu
64
64 kgHofbauer
70
70 kgKerschbaumer
71
68 kg
1
69 kgKovar
4
65 kgOioli
5
65 kgRomele
8
71 kgWang
10
70 kgMaček
20
73 kgMarbler
23
75 kgŠiroký
24
80 kgKovač
27
65 kgKjeldsen
28
69 kgĆatović
29
62 kgLube
34
63 kgKretschy
40
63 kgLond
48
65 kgHribar
49
60 kgPiskule
50
56 kgRosenlund
51
72 kgCvjetičanin
55
75 kgObdržálek
57
65 kgDivnić
60
64 kgPiciu
64
64 kgHofbauer
70
70 kgKerschbaumer
71
68 kg
Weight (KG) →
Result →
80
56
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRESEN Tobias Lund | 69 |
4 | KOVAR Stefan | 65 |
5 | OIOLI Manuel | 65 |
8 | ROMELE Alessandro | 71 |
10 | WANG Gustav | 70 |
20 | MAČEK Matic | 73 |
23 | MARBLER Stefan | 75 |
24 | ŠIROKÝ Štěpán | 80 |
27 | KOVAČ Štefan | 65 |
28 | KJELDSEN Christian Spang | 69 |
29 | ĆATOVIĆ Nermin | 62 |
34 | LUBE Bernhard | 63 |
40 | KRETSCHY Moritz | 63 |
48 | LOND Daniel | 65 |
49 | HRIBAR Jernej | 60 |
50 | PISKULE Žiga | 56 |
51 | ROSENLUND Stian | 72 |
55 | CVJETIČANIN Maks | 75 |
57 | OBDRŽÁLEK Tomáš | 65 |
60 | DIVNIĆ Jovan | 64 |
64 | PICIU Mattew-Denis | 64 |
70 | HOFBAUER Philipp | 70 |
71 | KERSCHBAUMER Leo | 68 |