Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Andresen
1
69 kgKovar
3
65 kgPiskule
4
56 kgŠiroký
5
80 kgKerschbaumer
7
68 kgRomele
10
71 kgDivnić
16
64 kgWang
17
70 kgĆatović
18
62 kgKjeldsen
19
69 kgMaček
26
73 kgObdržálek
28
65 kgLube
30
63 kgHribar
34
60 kgMarbler
36
75 kgKretschy
39
63 kgRosenlund
42
72 kgLond
48
65 kgCvjetičanin
50
75 kgKovač
58
65 kgOioli
60
65 kgPiciu
63
64 kgHofbauer
64
70 kg
1
69 kgKovar
3
65 kgPiskule
4
56 kgŠiroký
5
80 kgKerschbaumer
7
68 kgRomele
10
71 kgDivnić
16
64 kgWang
17
70 kgĆatović
18
62 kgKjeldsen
19
69 kgMaček
26
73 kgObdržálek
28
65 kgLube
30
63 kgHribar
34
60 kgMarbler
36
75 kgKretschy
39
63 kgRosenlund
42
72 kgLond
48
65 kgCvjetičanin
50
75 kgKovač
58
65 kgOioli
60
65 kgPiciu
63
64 kgHofbauer
64
70 kg
Weight (KG) →
Result →
80
56
1
64
# | Rider | Weight (KG) |
---|---|---|
1 | ANDRESEN Tobias Lund | 69 |
3 | KOVAR Stefan | 65 |
4 | PISKULE Žiga | 56 |
5 | ŠIROKÝ Štěpán | 80 |
7 | KERSCHBAUMER Leo | 68 |
10 | ROMELE Alessandro | 71 |
16 | DIVNIĆ Jovan | 64 |
17 | WANG Gustav | 70 |
18 | ĆATOVIĆ Nermin | 62 |
19 | KJELDSEN Christian Spang | 69 |
26 | MAČEK Matic | 73 |
28 | OBDRŽÁLEK Tomáš | 65 |
30 | LUBE Bernhard | 63 |
34 | HRIBAR Jernej | 60 |
36 | MARBLER Stefan | 75 |
39 | KRETSCHY Moritz | 63 |
42 | ROSENLUND Stian | 72 |
48 | LOND Daniel | 65 |
50 | CVJETIČANIN Maks | 75 |
58 | KOVAČ Štefan | 65 |
60 | OIOLI Manuel | 65 |
63 | PICIU Mattew-Denis | 64 |
64 | HOFBAUER Philipp | 70 |