Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Rosseler
1
78 kgDockx
2
64 kgVansummeren
3
79 kgSutherland
4
75 kgMertens
9
67 kgVastaranta
10
63 kgTerpstra
13
75 kgElijzen
14
80 kgYates
15
73 kgDe Vocht
17
78 kgBlackgrove
24
65 kgKohl
25
61 kgDe Schrooder
27
61 kgvan Hummel
37
64 kgBarbé
39
75 kgde Wilde
52
74 kgHegreberg
54
72 kg
1
78 kgDockx
2
64 kgVansummeren
3
79 kgSutherland
4
75 kgMertens
9
67 kgVastaranta
10
63 kgTerpstra
13
75 kgElijzen
14
80 kgYates
15
73 kgDe Vocht
17
78 kgBlackgrove
24
65 kgKohl
25
61 kgDe Schrooder
27
61 kgvan Hummel
37
64 kgBarbé
39
75 kgde Wilde
52
74 kgHegreberg
54
72 kg
Weight (KG) →
Result →
80
61
1
54
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
2 | DOCKX Bart | 64 |
3 | VANSUMMEREN Johan | 79 |
4 | SUTHERLAND Rory | 75 |
9 | MERTENS Pieter | 67 |
10 | VASTARANTA Jukka | 63 |
13 | TERPSTRA Niki | 75 |
14 | ELIJZEN Michiel | 80 |
15 | YATES Jeremy | 73 |
17 | DE VOCHT Wim | 78 |
24 | BLACKGROVE Heath | 65 |
25 | KOHL Bernhard | 61 |
27 | DE SCHROODER Benny | 61 |
37 | VAN HUMMEL Kenny | 64 |
39 | BARBÉ Koen | 75 |
52 | DE WILDE Sjef | 74 |
54 | HEGREBERG Morten | 72 |