Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Rosseler
1
78 kgDockx
2
64 kgSutherland
7
75 kgDe Vocht
12
78 kgVan Hecke
14
69 kgDe Schrooder
19
61 kgTerpstra
23
75 kgKohl
30
61 kgVastaranta
31
63 kgBlackgrove
35
65 kgElijzen
36
80 kgvan Hummel
44
64 kgBarbé
45
75 kgGoesinnen
54
75 kgHegreberg
56
72 kgNeirynck
84
71 kgde Wilde
87
74 kgCappelle
98
76 kgIsta
105
70 kgRenneboog
119
68 kgde Kort
125
69 kgSchets
136
74 kg
1
78 kgDockx
2
64 kgSutherland
7
75 kgDe Vocht
12
78 kgVan Hecke
14
69 kgDe Schrooder
19
61 kgTerpstra
23
75 kgKohl
30
61 kgVastaranta
31
63 kgBlackgrove
35
65 kgElijzen
36
80 kgvan Hummel
44
64 kgBarbé
45
75 kgGoesinnen
54
75 kgHegreberg
56
72 kgNeirynck
84
71 kgde Wilde
87
74 kgCappelle
98
76 kgIsta
105
70 kgRenneboog
119
68 kgde Kort
125
69 kgSchets
136
74 kg
Weight (KG) →
Result →
80
61
1
136
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
2 | DOCKX Bart | 64 |
7 | SUTHERLAND Rory | 75 |
12 | DE VOCHT Wim | 78 |
14 | VAN HECKE Preben | 69 |
19 | DE SCHROODER Benny | 61 |
23 | TERPSTRA Niki | 75 |
30 | KOHL Bernhard | 61 |
31 | VASTARANTA Jukka | 63 |
35 | BLACKGROVE Heath | 65 |
36 | ELIJZEN Michiel | 80 |
44 | VAN HUMMEL Kenny | 64 |
45 | BARBÉ Koen | 75 |
54 | GOESINNEN Floris | 75 |
56 | HEGREBERG Morten | 72 |
84 | NEIRYNCK Kevin | 71 |
87 | DE WILDE Sjef | 74 |
98 | CAPPELLE Dieter | 76 |
105 | ISTA Kevyn | 70 |
119 | RENNEBOOG Francis | 68 |
125 | DE KORT Koen | 69 |
136 | SCHETS Steve | 74 |