Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1 * weight + 85
This means that on average for every extra kilogram weight a rider loses -1 positions in the result.
Rosseler
1
78 kgVansummeren
2
79 kgVastaranta
3
63 kgDockx
4
64 kgTerpstra
5
75 kgSutherland
6
75 kgElijzen
7
80 kgYates
8
73 kgde Kort
9
69 kgIsta
11
70 kgCappelle
13
76 kgVan Hecke
14
69 kgvan Hummel
16
64 kgDe Vocht
19
78 kgBarbé
30
75 kgBlackgrove
31
65 kgKohl
34
61 kgMertens
35
67 kgDe Schrooder
41
61 kg
1
78 kgVansummeren
2
79 kgVastaranta
3
63 kgDockx
4
64 kgTerpstra
5
75 kgSutherland
6
75 kgElijzen
7
80 kgYates
8
73 kgde Kort
9
69 kgIsta
11
70 kgCappelle
13
76 kgVan Hecke
14
69 kgvan Hummel
16
64 kgDe Vocht
19
78 kgBarbé
30
75 kgBlackgrove
31
65 kgKohl
34
61 kgMertens
35
67 kgDe Schrooder
41
61 kg
Weight (KG) →
Result →
80
61
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | ROSSELER Sébastien | 78 |
2 | VANSUMMEREN Johan | 79 |
3 | VASTARANTA Jukka | 63 |
4 | DOCKX Bart | 64 |
5 | TERPSTRA Niki | 75 |
6 | SUTHERLAND Rory | 75 |
7 | ELIJZEN Michiel | 80 |
8 | YATES Jeremy | 73 |
9 | DE KORT Koen | 69 |
11 | ISTA Kevyn | 70 |
13 | CAPPELLE Dieter | 76 |
14 | VAN HECKE Preben | 69 |
16 | VAN HUMMEL Kenny | 64 |
19 | DE VOCHT Wim | 78 |
30 | BARBÉ Koen | 75 |
31 | BLACKGROVE Heath | 65 |
34 | KOHL Bernhard | 61 |
35 | MERTENS Pieter | 67 |
41 | DE SCHROODER Benny | 61 |