Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 16
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
van Hummel
1
64 kgVastaranta
3
63 kgIsta
4
70 kgDe Schrooder
8
61 kgCappelle
9
76 kgHegreberg
18
72 kgDockx
19
64 kgde Wilde
21
74 kgYates
23
73 kgRosseler
30
78 kgVansummeren
32
79 kgSchets
34
74 kgMertens
38
67 kgElijzen
42
80 kgBarbé
43
75 kgDe Vocht
48
78 kgKohl
55
61 kgBlackgrove
58
65 kg
1
64 kgVastaranta
3
63 kgIsta
4
70 kgDe Schrooder
8
61 kgCappelle
9
76 kgHegreberg
18
72 kgDockx
19
64 kgde Wilde
21
74 kgYates
23
73 kgRosseler
30
78 kgVansummeren
32
79 kgSchets
34
74 kgMertens
38
67 kgElijzen
42
80 kgBarbé
43
75 kgDe Vocht
48
78 kgKohl
55
61 kgBlackgrove
58
65 kg
Weight (KG) →
Result →
80
61
1
58
# | Rider | Weight (KG) |
---|---|---|
1 | VAN HUMMEL Kenny | 64 |
3 | VASTARANTA Jukka | 63 |
4 | ISTA Kevyn | 70 |
8 | DE SCHROODER Benny | 61 |
9 | CAPPELLE Dieter | 76 |
18 | HEGREBERG Morten | 72 |
19 | DOCKX Bart | 64 |
21 | DE WILDE Sjef | 74 |
23 | YATES Jeremy | 73 |
30 | ROSSELER Sébastien | 78 |
32 | VANSUMMEREN Johan | 79 |
34 | SCHETS Steve | 74 |
38 | MERTENS Pieter | 67 |
42 | ELIJZEN Michiel | 80 |
43 | BARBÉ Koen | 75 |
48 | DE VOCHT Wim | 78 |
55 | KOHL Bernhard | 61 |
58 | BLACKGROVE Heath | 65 |