Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Yates
1
73 kgSteurs
2
77 kgHovelijnck
3
75 kgReus
4
70 kgClarke
5
70 kgde Maar
6
70 kgBoom
9
75 kgPauwels
11
65 kgFarrar
12
73 kgCozza
19
70 kgIngels
21
70 kgde Wilde
25
74 kgStamsnijder
26
76 kgBoucher
29
78 kgRenders
30
63 kgLisabeth
33
75 kgStubbe
48
66 kgVandenbergh
61
86 kgNeirynck
74
71 kg
1
73 kgSteurs
2
77 kgHovelijnck
3
75 kgReus
4
70 kgClarke
5
70 kgde Maar
6
70 kgBoom
9
75 kgPauwels
11
65 kgFarrar
12
73 kgCozza
19
70 kgIngels
21
70 kgde Wilde
25
74 kgStamsnijder
26
76 kgBoucher
29
78 kgRenders
30
63 kgLisabeth
33
75 kgStubbe
48
66 kgVandenbergh
61
86 kgNeirynck
74
71 kg
Weight (KG) →
Result →
86
63
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | YATES Jeremy | 73 |
2 | STEURS Geert | 77 |
3 | HOVELIJNCK Kurt | 75 |
4 | REUS Kai | 70 |
5 | CLARKE Hilton | 70 |
6 | DE MAAR Marc | 70 |
9 | BOOM Lars | 75 |
11 | PAUWELS Serge | 65 |
12 | FARRAR Tyler | 73 |
19 | COZZA Steven | 70 |
21 | INGELS Nick | 70 |
25 | DE WILDE Sjef | 74 |
26 | STAMSNIJDER Tom | 76 |
29 | BOUCHER David | 78 |
30 | RENDERS Sven | 63 |
33 | LISABETH Kenny | 75 |
48 | STUBBE Tom | 66 |
61 | VANDENBERGH Stijn | 86 |
74 | NEIRYNCK Kevin | 71 |