Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 70
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Steurs
3
77 kgHovelijnck
6
75 kgClarke
11
70 kgde Wilde
12
74 kgRenders
17
63 kgFarrar
22
73 kgLisabeth
23
75 kgHegreberg
24
72 kgHeijboer
26
78 kgReus
31
70 kgIngels
32
70 kgCozza
41
70 kgStamsnijder
43
76 kgBoucher
45
78 kgYates
48
73 kgPauwels
49
65 kgde Maar
51
70 kgBoom
54
75 kgStubbe
60
66 kgNeirynck
85
71 kgKaisen
91
82 kgVandenbergh
92
86 kg
3
77 kgHovelijnck
6
75 kgClarke
11
70 kgde Wilde
12
74 kgRenders
17
63 kgFarrar
22
73 kgLisabeth
23
75 kgHegreberg
24
72 kgHeijboer
26
78 kgReus
31
70 kgIngels
32
70 kgCozza
41
70 kgStamsnijder
43
76 kgBoucher
45
78 kgYates
48
73 kgPauwels
49
65 kgde Maar
51
70 kgBoom
54
75 kgStubbe
60
66 kgNeirynck
85
71 kgKaisen
91
82 kgVandenbergh
92
86 kg
Weight (KG) →
Result →
86
63
3
92
# | Rider | Weight (KG) |
---|---|---|
3 | STEURS Geert | 77 |
6 | HOVELIJNCK Kurt | 75 |
11 | CLARKE Hilton | 70 |
12 | DE WILDE Sjef | 74 |
17 | RENDERS Sven | 63 |
22 | FARRAR Tyler | 73 |
23 | LISABETH Kenny | 75 |
24 | HEGREBERG Morten | 72 |
26 | HEIJBOER Mathieu | 78 |
31 | REUS Kai | 70 |
32 | INGELS Nick | 70 |
41 | COZZA Steven | 70 |
43 | STAMSNIJDER Tom | 76 |
45 | BOUCHER David | 78 |
48 | YATES Jeremy | 73 |
49 | PAUWELS Serge | 65 |
51 | DE MAAR Marc | 70 |
54 | BOOM Lars | 75 |
60 | STUBBE Tom | 66 |
85 | NEIRYNCK Kevin | 71 |
91 | KAISEN Olivier | 82 |
92 | VANDENBERGH Stijn | 86 |