Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Boucher
1
78 kgBoom
2
75 kgCozza
3
70 kgReus
4
70 kgYates
5
73 kgStubbe
6
66 kgClarke
7
70 kgde Maar
8
70 kgStamsnijder
11
76 kgPauwels
12
65 kgFarrar
13
73 kgSteurs
15
77 kgHeijboer
17
78 kgKaisen
19
82 kgHovelijnck
23
75 kgIngels
26
70 kgde Wilde
37
74 kgRenders
49
63 kgLisabeth
52
75 kgHegreberg
65
72 kgVandenbergh
76
86 kgNeirynck
108
71 kg
1
78 kgBoom
2
75 kgCozza
3
70 kgReus
4
70 kgYates
5
73 kgStubbe
6
66 kgClarke
7
70 kgde Maar
8
70 kgStamsnijder
11
76 kgPauwels
12
65 kgFarrar
13
73 kgSteurs
15
77 kgHeijboer
17
78 kgKaisen
19
82 kgHovelijnck
23
75 kgIngels
26
70 kgde Wilde
37
74 kgRenders
49
63 kgLisabeth
52
75 kgHegreberg
65
72 kgVandenbergh
76
86 kgNeirynck
108
71 kg
Weight (KG) →
Result →
86
63
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | BOUCHER David | 78 |
2 | BOOM Lars | 75 |
3 | COZZA Steven | 70 |
4 | REUS Kai | 70 |
5 | YATES Jeremy | 73 |
6 | STUBBE Tom | 66 |
7 | CLARKE Hilton | 70 |
8 | DE MAAR Marc | 70 |
11 | STAMSNIJDER Tom | 76 |
12 | PAUWELS Serge | 65 |
13 | FARRAR Tyler | 73 |
15 | STEURS Geert | 77 |
17 | HEIJBOER Mathieu | 78 |
19 | KAISEN Olivier | 82 |
23 | HOVELIJNCK Kurt | 75 |
26 | INGELS Nick | 70 |
37 | DE WILDE Sjef | 74 |
49 | RENDERS Sven | 63 |
52 | LISABETH Kenny | 75 |
65 | HEGREBERG Morten | 72 |
76 | VANDENBERGH Stijn | 86 |
108 | NEIRYNCK Kevin | 71 |