Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Delgado
3
64 kgKelly
9
77 kgLlach
11
58 kgBreukink
15
70 kgHodge
23
74 kgWeltz
28
65 kgMurguialday
29
58 kgHerrera
48
57 kgSørensen
51
70 kgMauri
52
68 kgStephens
55
65 kgFignon
65
67 kgDomínguez
66
67 kgArgentin
73
66 kgMujika
74
73 kgSergeant
83
76 kgSciandri
85
75 kgElliott
87
76 kgOvando
105
66 kgBalboa
128
66 kgVilamajo
130
70 kgPlanckaert
135
69 kg
3
64 kgKelly
9
77 kgLlach
11
58 kgBreukink
15
70 kgHodge
23
74 kgWeltz
28
65 kgMurguialday
29
58 kgHerrera
48
57 kgSørensen
51
70 kgMauri
52
68 kgStephens
55
65 kgFignon
65
67 kgDomínguez
66
67 kgArgentin
73
66 kgMujika
74
73 kgSergeant
83
76 kgSciandri
85
75 kgElliott
87
76 kgOvando
105
66 kgBalboa
128
66 kgVilamajo
130
70 kgPlanckaert
135
69 kg
Weight (KG) →
Result →
77
57
3
135
# | Rider | Weight (KG) |
---|---|---|
3 | DELGADO Pedro | 64 |
9 | KELLY Sean | 77 |
11 | LLACH Joaquin | 58 |
15 | BREUKINK Erik | 70 |
23 | HODGE Stephen | 74 |
28 | WELTZ Johnny | 65 |
29 | MURGUIALDAY Javier | 58 |
48 | HERRERA Luis Alberto | 57 |
51 | SØRENSEN Rolf | 70 |
52 | MAURI Melchor | 68 |
55 | STEPHENS Neil | 65 |
65 | FIGNON Laurent | 67 |
66 | DOMÍNGUEZ Manuel Jorge | 67 |
73 | ARGENTIN Moreno | 66 |
74 | MUJIKA Jokin | 73 |
83 | SERGEANT Marc | 76 |
85 | SCIANDRI Maximilian | 75 |
87 | ELLIOTT Malcolm | 76 |
105 | OVANDO Rolando | 66 |
128 | BALBOA Antonio | 66 |
130 | VILAMAJO Jaime | 70 |
135 | PLANCKAERT Eddy | 69 |