Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Chiappucci
1
67 kgDelgado
2
64 kgEscartín
4
61 kgBelli
6
64 kgJiménez
7
70 kgBruyneel
10
71 kgOlano
11
70 kgGarcía Casas
12
63 kgDonati
14
75 kgVirenque
15
65 kgBreukink
16
70 kgEdo
18
64 kgTonkov
31
70 kgOsa
33
64 kgZülle
34
72 kgSerrano
37
63 kgZberg
40
72 kgMauri
42
68 kgArmstrong
44
72 kgLuttenberger
47
60 kgvan Heeswijk
49
73 kgPlaza
50
68 kg
1
67 kgDelgado
2
64 kgEscartín
4
61 kgBelli
6
64 kgJiménez
7
70 kgBruyneel
10
71 kgOlano
11
70 kgGarcía Casas
12
63 kgDonati
14
75 kgVirenque
15
65 kgBreukink
16
70 kgEdo
18
64 kgTonkov
31
70 kgOsa
33
64 kgZülle
34
72 kgSerrano
37
63 kgZberg
40
72 kgMauri
42
68 kgArmstrong
44
72 kgLuttenberger
47
60 kgvan Heeswijk
49
73 kgPlaza
50
68 kg
Weight (KG) →
Result →
75
60
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | CHIAPPUCCI Claudio | 67 |
2 | DELGADO Pedro | 64 |
4 | ESCARTÍN Fernando | 61 |
6 | BELLI Wladimir | 64 |
7 | JIMÉNEZ José María | 70 |
10 | BRUYNEEL Johan | 71 |
11 | OLANO Abraham | 70 |
12 | GARCÍA CASAS Félix Miguel | 63 |
14 | DONATI Massimo | 75 |
15 | VIRENQUE Richard | 65 |
16 | BREUKINK Erik | 70 |
18 | EDO Ángel | 64 |
31 | TONKOV Pavel | 70 |
33 | OSA Aitor | 64 |
34 | ZÜLLE Alex | 72 |
37 | SERRANO Marcos Antonio | 63 |
40 | ZBERG Beat | 72 |
42 | MAURI Melchor | 68 |
44 | ARMSTRONG Lance | 72 |
47 | LUTTENBERGER Peter | 60 |
49 | VAN HEESWIJK Max | 73 |
50 | PLAZA David | 68 |