Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Jalabert
1
66 kgBramati
2
72 kgvan Heeswijk
4
73 kgEdo
5
64 kgOlano
11
70 kgSerpellini
12
75 kgVirenque
17
65 kgChiappucci
19
67 kgEscartín
20
61 kgDelgado
21
64 kgSwart
23
74 kgDonati
26
75 kgJiménez
28
70 kgStenersen
35
70 kgLelli
36
69 kgBreukink
39
70 kgBruyneel
41
71 kgRodrigues
42
68 kgGarcía Casas
45
63 kgOsa
46
64 kgPlaza
49
68 kgZberg
57
72 kg
1
66 kgBramati
2
72 kgvan Heeswijk
4
73 kgEdo
5
64 kgOlano
11
70 kgSerpellini
12
75 kgVirenque
17
65 kgChiappucci
19
67 kgEscartín
20
61 kgDelgado
21
64 kgSwart
23
74 kgDonati
26
75 kgJiménez
28
70 kgStenersen
35
70 kgLelli
36
69 kgBreukink
39
70 kgBruyneel
41
71 kgRodrigues
42
68 kgGarcía Casas
45
63 kgOsa
46
64 kgPlaza
49
68 kgZberg
57
72 kg
Weight (KG) →
Result →
75
61
1
57
# | Rider | Weight (KG) |
---|---|---|
1 | JALABERT Laurent | 66 |
2 | BRAMATI Davide | 72 |
4 | VAN HEESWIJK Max | 73 |
5 | EDO Ángel | 64 |
11 | OLANO Abraham | 70 |
12 | SERPELLINI Marco | 75 |
17 | VIRENQUE Richard | 65 |
19 | CHIAPPUCCI Claudio | 67 |
20 | ESCARTÍN Fernando | 61 |
21 | DELGADO Pedro | 64 |
23 | SWART Steve | 74 |
26 | DONATI Massimo | 75 |
28 | JIMÉNEZ José María | 70 |
35 | STENERSEN Bjørn | 70 |
36 | LELLI Massimiliano | 69 |
39 | BREUKINK Erik | 70 |
41 | BRUYNEEL Johan | 71 |
42 | RODRIGUES Orlando Sergio | 68 |
45 | GARCÍA CASAS Félix Miguel | 63 |
46 | OSA Aitor | 64 |
49 | PLAZA David | 68 |
57 | ZBERG Beat | 72 |