Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Fondriest
1
70 kgChiappucci
2
67 kgJalabert
3
66 kgGaumont
4
77 kgGarmendia
5
68 kgCipollini
6
77 kgCasero
7
72 kgBaffi
8
70 kgMauri
9
68 kgCasagrande
10
64 kgOlano
12
70 kgCapelle
13
73 kgO'Grady
14
73 kgMartinello
15
71 kgLlaneras
16
65 kgMattan
19
69 kgBertolini
20
63 kg
1
70 kgChiappucci
2
67 kgJalabert
3
66 kgGaumont
4
77 kgGarmendia
5
68 kgCipollini
6
77 kgCasero
7
72 kgBaffi
8
70 kgMauri
9
68 kgCasagrande
10
64 kgOlano
12
70 kgCapelle
13
73 kgO'Grady
14
73 kgMartinello
15
71 kgLlaneras
16
65 kgMattan
19
69 kgBertolini
20
63 kg
Weight (KG) →
Result →
77
63
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | FONDRIEST Maurizio | 70 |
2 | CHIAPPUCCI Claudio | 67 |
3 | JALABERT Laurent | 66 |
4 | GAUMONT Philippe | 77 |
5 | GARMENDIA Aitor | 68 |
6 | CIPOLLINI Mario | 77 |
7 | CASERO Ángel Luis | 72 |
8 | BAFFI Adriano | 70 |
9 | MAURI Melchor | 68 |
10 | CASAGRANDE Francesco | 64 |
12 | OLANO Abraham | 70 |
13 | CAPELLE Christophe | 73 |
14 | O'GRADY Stuart | 73 |
15 | MARTINELLO Silvio | 71 |
16 | LLANERAS Juan | 65 |
19 | MATTAN Nico | 69 |
20 | BERTOLINI Alessandro | 63 |