Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 1
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Jalabert
1
66 kgHamburger
3
58 kgMauri
7
68 kgGaumont
9
77 kgHodge
11
74 kgLelli
12
69 kgBreukink
15
70 kgJiménez
18
70 kgCasagrande
22
64 kgBeltrán
24
60 kgden Bakker
27
71 kgHervé
28
62 kgChiappucci
29
67 kgOsa
32
64 kgCasero
33
72 kgGarcía Casas
35
63 kgRodrigues
36
68 kgCuesta
37
62 kgMeinert-Nielsen
40
73 kgMartinello
41
71 kgFondriest
44
70 kgDonati
49
75 kg
1
66 kgHamburger
3
58 kgMauri
7
68 kgGaumont
9
77 kgHodge
11
74 kgLelli
12
69 kgBreukink
15
70 kgJiménez
18
70 kgCasagrande
22
64 kgBeltrán
24
60 kgden Bakker
27
71 kgHervé
28
62 kgChiappucci
29
67 kgOsa
32
64 kgCasero
33
72 kgGarcía Casas
35
63 kgRodrigues
36
68 kgCuesta
37
62 kgMeinert-Nielsen
40
73 kgMartinello
41
71 kgFondriest
44
70 kgDonati
49
75 kg
Weight (KG) →
Result →
77
58
1
49
# | Rider | Weight (KG) |
---|---|---|
1 | JALABERT Laurent | 66 |
3 | HAMBURGER Bo | 58 |
7 | MAURI Melchor | 68 |
9 | GAUMONT Philippe | 77 |
11 | HODGE Stephen | 74 |
12 | LELLI Massimiliano | 69 |
15 | BREUKINK Erik | 70 |
18 | JIMÉNEZ José María | 70 |
22 | CASAGRANDE Francesco | 64 |
24 | BELTRÁN Manuel | 60 |
27 | DEN BAKKER Maarten | 71 |
28 | HERVÉ Pascal | 62 |
29 | CHIAPPUCCI Claudio | 67 |
32 | OSA Aitor | 64 |
33 | CASERO Ángel Luis | 72 |
35 | GARCÍA CASAS Félix Miguel | 63 |
36 | RODRIGUES Orlando Sergio | 68 |
37 | CUESTA Iñigo | 62 |
40 | MEINERT-NIELSEN Peter | 73 |
41 | MARTINELLO Silvio | 71 |
44 | FONDRIEST Maurizio | 70 |
49 | DONATI Massimo | 75 |