Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 37
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zabel
1
69 kgHincapie
2
83 kgIvanov
3
73 kgMartín Perdiguero
5
63 kgGerrikagoitia
6
63 kgClinger
7
77 kgKlemenčič
8
69 kgHoffman
10
80 kgTrenti
12
68 kgPiziks
13
70 kgSvorada
14
76 kgvan Heeswijk
15
73 kgHeras
17
59 kgRodrigues
18
68 kgBurgos
19
58 kgDi Grande
21
58 kgFlecha
22
72 kg
1
69 kgHincapie
2
83 kgIvanov
3
73 kgMartín Perdiguero
5
63 kgGerrikagoitia
6
63 kgClinger
7
77 kgKlemenčič
8
69 kgHoffman
10
80 kgTrenti
12
68 kgPiziks
13
70 kgSvorada
14
76 kgvan Heeswijk
15
73 kgHeras
17
59 kgRodrigues
18
68 kgBurgos
19
58 kgDi Grande
21
58 kgFlecha
22
72 kg
Weight (KG) →
Result →
83
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | ZABEL Erik | 69 |
2 | HINCAPIE George | 83 |
3 | IVANOV Sergei | 73 |
5 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
6 | GERRIKAGOITIA Gorka | 63 |
7 | CLINGER David | 77 |
8 | KLEMENČIČ Zoran | 69 |
10 | HOFFMAN Tristan | 80 |
12 | TRENTI Guido | 68 |
13 | PIZIKS Arvis | 70 |
14 | SVORADA Ján | 76 |
15 | VAN HEESWIJK Max | 73 |
17 | HERAS Roberto | 59 |
18 | RODRIGUES Orlando Sergio | 68 |
19 | BURGOS Nacor | 58 |
21 | DI GRANDE Giuseppe | 58 |
22 | FLECHA Juan Antonio | 72 |