Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
de Groot
1
65 kgKintana
2
60 kgPecharromán
3
78 kgVicioso
4
60 kgRasmussen
5
58 kgHincapie
6
83 kgHeras
7
59 kgKessler
8
70 kgBlanco
9
66 kgNoval
10
71 kgFlecha
11
72 kgBossoni
12
62 kgTrentin
13
65 kgFlorencio
14
59 kgCasero
15
74 kgAtienza
17
60 kgEtxebarria
18
68 kgBasso
19
70 kgHaselbacher
21
69 kgZandio
22
73 kgOsa
23
65 kgIsasi
24
70 kgArrieta
25
68 kg
1
65 kgKintana
2
60 kgPecharromán
3
78 kgVicioso
4
60 kgRasmussen
5
58 kgHincapie
6
83 kgHeras
7
59 kgKessler
8
70 kgBlanco
9
66 kgNoval
10
71 kgFlecha
11
72 kgBossoni
12
62 kgTrentin
13
65 kgFlorencio
14
59 kgCasero
15
74 kgAtienza
17
60 kgEtxebarria
18
68 kgBasso
19
70 kgHaselbacher
21
69 kgZandio
22
73 kgOsa
23
65 kgIsasi
24
70 kgArrieta
25
68 kg
Weight (KG) →
Result →
83
58
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | DE GROOT Bram | 65 |
2 | KINTANA Aitor | 60 |
3 | PECHARROMÁN José Antonio | 78 |
4 | VICIOSO Ángel | 60 |
5 | RASMUSSEN Michael | 58 |
6 | HINCAPIE George | 83 |
7 | HERAS Roberto | 59 |
8 | KESSLER Matthias | 70 |
9 | BLANCO Santiago | 66 |
10 | NOVAL Benjamín | 71 |
11 | FLECHA Juan Antonio | 72 |
12 | BOSSONI Paolo | 62 |
13 | TRENTIN Guido | 65 |
14 | FLORENCIO Xavier | 59 |
15 | CASERO Rafael | 74 |
17 | ATIENZA Daniel | 60 |
18 | ETXEBARRIA Unai | 68 |
19 | BASSO Ivan | 70 |
21 | HASELBACHER René | 69 |
22 | ZANDIO Xabier | 73 |
23 | OSA Unai | 65 |
24 | ISASI Iñaki | 70 |
25 | ARRIETA José Luis | 68 |