Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Martín Perdiguero
1
63 kgKarpets
2
79 kgLaiseka
4
63 kgHondo
5
73 kgParra
6
62 kgLatasa
7
66 kgvan Heeswijk
8
73 kgHaselbacher
9
69 kgValverde
10
61 kgPérez Rodríguez
11
67 kgLópez de Munain
13
65 kgRodríguez
14
58 kgLorenzetto
15
71 kgCárdenas
16
59 kgPiepoli
17
54 kgJufré
19
65 kgCarrara
20
67 kgVentoso
21
75 kgBallan
22
73 kgLastras
23
68 kgAtienza
24
60 kgCuesta
25
62 kg
1
63 kgKarpets
2
79 kgLaiseka
4
63 kgHondo
5
73 kgParra
6
62 kgLatasa
7
66 kgvan Heeswijk
8
73 kgHaselbacher
9
69 kgValverde
10
61 kgPérez Rodríguez
11
67 kgLópez de Munain
13
65 kgRodríguez
14
58 kgLorenzetto
15
71 kgCárdenas
16
59 kgPiepoli
17
54 kgJufré
19
65 kgCarrara
20
67 kgVentoso
21
75 kgBallan
22
73 kgLastras
23
68 kgAtienza
24
60 kgCuesta
25
62 kg
Weight (KG) →
Result →
79
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MARTÍN PERDIGUERO Miguel Ángel | 63 |
2 | KARPETS Vladimir | 79 |
4 | LAISEKA Roberto | 63 |
5 | HONDO Danilo | 73 |
6 | PARRA Iván Ramiro | 62 |
7 | LATASA David | 66 |
8 | VAN HEESWIJK Max | 73 |
9 | HASELBACHER René | 69 |
10 | VALVERDE Alejandro | 61 |
11 | PÉREZ RODRÍGUEZ Luis | 67 |
13 | LÓPEZ DE MUNAIN Alberto | 65 |
14 | RODRÍGUEZ Joaquim | 58 |
15 | LORENZETTO Mirco | 71 |
16 | CÁRDENAS Félix Rafael | 59 |
17 | PIEPOLI Leonardo | 54 |
19 | JUFRÉ Josep | 65 |
20 | CARRARA Matteo | 67 |
21 | VENTOSO Francisco José | 75 |
22 | BALLAN Alessandro | 73 |
23 | LASTRAS Pablo | 68 |
24 | ATIENZA Daniel | 60 |
25 | CUESTA Iñigo | 62 |