Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgHunter
2
72 kgKarpets
3
79 kgBotero
4
75 kgCancellara
7
80 kgBrajkovič
8
60 kgZabel
9
69 kgKemps
10
73 kgMoreau
11
71 kgGálvez
12
68 kgHaselbacher
13
69 kgEdo
14
64 kgBennati
15
71 kgHesjedal
16
73 kgCapecchi
18
65 kgMarkov
19
80 kgCañada
20
65 kgGerdemann
21
71 kgPeron
22
70 kgO'Grady
23
73 kgGrivko
24
70 kgHammond
25
71 kg
1
83 kgHunter
2
72 kgKarpets
3
79 kgBotero
4
75 kgCancellara
7
80 kgBrajkovič
8
60 kgZabel
9
69 kgKemps
10
73 kgMoreau
11
71 kgGálvez
12
68 kgHaselbacher
13
69 kgEdo
14
64 kgBennati
15
71 kgHesjedal
16
73 kgCapecchi
18
65 kgMarkov
19
80 kgCañada
20
65 kgGerdemann
21
71 kgPeron
22
70 kgO'Grady
23
73 kgGrivko
24
70 kgHammond
25
71 kg
Weight (KG) →
Result →
83
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | HUNTER Robert | 72 |
3 | KARPETS Vladimir | 79 |
4 | BOTERO Santiago | 75 |
7 | CANCELLARA Fabian | 80 |
8 | BRAJKOVIČ Janez | 60 |
9 | ZABEL Erik | 69 |
10 | KEMPS Aaron | 73 |
11 | MOREAU Christophe | 71 |
12 | GÁLVEZ Isaac | 68 |
13 | HASELBACHER René | 69 |
14 | EDO Ángel | 64 |
15 | BENNATI Daniele | 71 |
16 | HESJEDAL Ryder | 73 |
18 | CAPECCHI Eros | 65 |
19 | MARKOV Alexei | 80 |
20 | CAÑADA David | 65 |
21 | GERDEMANN Linus | 71 |
22 | PERON Andrea | 70 |
23 | O'GRADY Stuart | 73 |
24 | GRIVKO Andrey | 70 |
25 | HAMMOND Roger | 71 |