Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgHunter
2
72 kgKarpets
3
79 kgBotero
4
75 kgCancellara
8
80 kgCañada
9
65 kgBrajkovič
10
60 kgZabel
11
69 kgBennati
12
71 kgKemps
13
73 kgMoreau
14
71 kgArroyo
15
63 kgEdo
16
64 kgMarkov
17
80 kgHaselbacher
18
69 kgGálvez
19
68 kgHesjedal
21
73 kgAstarloza
23
72 kgLang
24
77 kgCapecchi
25
65 kg
1
83 kgHunter
2
72 kgKarpets
3
79 kgBotero
4
75 kgCancellara
8
80 kgCañada
9
65 kgBrajkovič
10
60 kgZabel
11
69 kgBennati
12
71 kgKemps
13
73 kgMoreau
14
71 kgArroyo
15
63 kgEdo
16
64 kgMarkov
17
80 kgHaselbacher
18
69 kgGálvez
19
68 kgHesjedal
21
73 kgAstarloza
23
72 kgLang
24
77 kgCapecchi
25
65 kg
Weight (KG) →
Result →
83
60
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | HUNTER Robert | 72 |
3 | KARPETS Vladimir | 79 |
4 | BOTERO Santiago | 75 |
8 | CANCELLARA Fabian | 80 |
9 | CAÑADA David | 65 |
10 | BRAJKOVIČ Janez | 60 |
11 | ZABEL Erik | 69 |
12 | BENNATI Daniele | 71 |
13 | KEMPS Aaron | 73 |
14 | MOREAU Christophe | 71 |
15 | ARROYO David | 63 |
16 | EDO Ángel | 64 |
17 | MARKOV Alexei | 80 |
18 | HASELBACHER René | 69 |
19 | GÁLVEZ Isaac | 68 |
21 | HESJEDAL Ryder | 73 |
23 | ASTARLOZA Mikel | 72 |
24 | LANG Sebastian | 77 |
25 | CAPECCHI Eros | 65 |