Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgKarpets
2
79 kgMugerli
3
68 kgBotero
4
75 kgCancellara
7
80 kgCañada
8
65 kgBrajkovič
9
60 kgZabel
10
69 kgBennati
11
71 kgKemps
12
73 kgMoreau
13
71 kgArroyo
14
63 kgEdo
15
64 kgMarkov
16
80 kgHaselbacher
17
69 kgGálvez
18
68 kgQuinziato
20
74 kgHesjedal
21
73 kgGerdemann
22
71 kgIglinskiy
23
67 kgFerrío
24
51 kgAstarloza
25
72 kg
1
83 kgKarpets
2
79 kgMugerli
3
68 kgBotero
4
75 kgCancellara
7
80 kgCañada
8
65 kgBrajkovič
9
60 kgZabel
10
69 kgBennati
11
71 kgKemps
12
73 kgMoreau
13
71 kgArroyo
14
63 kgEdo
15
64 kgMarkov
16
80 kgHaselbacher
17
69 kgGálvez
18
68 kgQuinziato
20
74 kgHesjedal
21
73 kgGerdemann
22
71 kgIglinskiy
23
67 kgFerrío
24
51 kgAstarloza
25
72 kg
Weight (KG) →
Result →
83
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | KARPETS Vladimir | 79 |
3 | MUGERLI Matej | 68 |
4 | BOTERO Santiago | 75 |
7 | CANCELLARA Fabian | 80 |
8 | CAÑADA David | 65 |
9 | BRAJKOVIČ Janez | 60 |
10 | ZABEL Erik | 69 |
11 | BENNATI Daniele | 71 |
12 | KEMPS Aaron | 73 |
13 | MOREAU Christophe | 71 |
14 | ARROYO David | 63 |
15 | EDO Ángel | 64 |
16 | MARKOV Alexei | 80 |
17 | HASELBACHER René | 69 |
18 | GÁLVEZ Isaac | 68 |
20 | QUINZIATO Manuel | 74 |
21 | HESJEDAL Ryder | 73 |
22 | GERDEMANN Linus | 71 |
23 | IGLINSKIY Maxim | 67 |
24 | FERRÍO Jorge | 51 |
25 | ASTARLOZA Mikel | 72 |