Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 40
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hushovd
1
83 kgBennati
2
71 kgKemps
3
73 kgZabel
4
69 kgKarpets
5
79 kgMugerli
6
68 kgBotero
7
75 kgEdo
8
64 kgCancellara
11
80 kgCañada
12
65 kgBrajkovič
13
60 kgO'Grady
14
73 kgMoreau
15
71 kgLang
16
77 kgArroyo
17
63 kgPineau
18
65 kgMarkov
19
80 kgGálvez
20
68 kgIglinskiy
21
67 kgHesjedal
23
73 kgGerdemann
24
71 kgFerrío
25
51 kg
1
83 kgBennati
2
71 kgKemps
3
73 kgZabel
4
69 kgKarpets
5
79 kgMugerli
6
68 kgBotero
7
75 kgEdo
8
64 kgCancellara
11
80 kgCañada
12
65 kgBrajkovič
13
60 kgO'Grady
14
73 kgMoreau
15
71 kgLang
16
77 kgArroyo
17
63 kgPineau
18
65 kgMarkov
19
80 kgGálvez
20
68 kgIglinskiy
21
67 kgHesjedal
23
73 kgGerdemann
24
71 kgFerrío
25
51 kg
Weight (KG) →
Result →
83
51
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | BENNATI Daniele | 71 |
3 | KEMPS Aaron | 73 |
4 | ZABEL Erik | 69 |
5 | KARPETS Vladimir | 79 |
6 | MUGERLI Matej | 68 |
7 | BOTERO Santiago | 75 |
8 | EDO Ángel | 64 |
11 | CANCELLARA Fabian | 80 |
12 | CAÑADA David | 65 |
13 | BRAJKOVIČ Janez | 60 |
14 | O'GRADY Stuart | 73 |
15 | MOREAU Christophe | 71 |
16 | LANG Sebastian | 77 |
17 | ARROYO David | 63 |
18 | PINEAU Jérôme | 65 |
19 | MARKOV Alexei | 80 |
20 | GÁLVEZ Isaac | 68 |
21 | IGLINSKIY Maxim | 67 |
23 | HESJEDAL Ryder | 73 |
24 | GERDEMANN Linus | 71 |
25 | FERRÍO Jorge | 51 |