Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 44
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Hushovd
1
83 kgCésar Veloso
2
69 kgDuque
3
59 kgZberg
4
69 kgEisel
5
74 kgFédrigo
6
66 kgHincapie
7
83 kgRenshaw
8
74 kgJufré
9
65 kgDessel
10
63 kgPauriol
12
68 kgLancaster
13
78 kgViganò
14
67 kgDrujon
15
75 kgNavarro
16
60 kgEfimkin
17
67 kgGeslin
18
68 kgBrajkovič
19
60 kgVanendert
20
62 kgBotcharov
21
54 kgMoreno
22
59 kgLöfkvist
24
70 kgUrán
25
63 kg
1
83 kgCésar Veloso
2
69 kgDuque
3
59 kgZberg
4
69 kgEisel
5
74 kgFédrigo
6
66 kgHincapie
7
83 kgRenshaw
8
74 kgJufré
9
65 kgDessel
10
63 kgPauriol
12
68 kgLancaster
13
78 kgViganò
14
67 kgDrujon
15
75 kgNavarro
16
60 kgEfimkin
17
67 kgGeslin
18
68 kgBrajkovič
19
60 kgVanendert
20
62 kgBotcharov
21
54 kgMoreno
22
59 kgLöfkvist
24
70 kgUrán
25
63 kg
Weight (KG) →
Result →
83
54
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | HUSHOVD Thor | 83 |
2 | CÉSAR VELOSO Gustavo | 69 |
3 | DUQUE Leonardo Fabio | 59 |
4 | ZBERG Markus | 69 |
5 | EISEL Bernhard | 74 |
6 | FÉDRIGO Pierrick | 66 |
7 | HINCAPIE George | 83 |
8 | RENSHAW Mark | 74 |
9 | JUFRÉ Josep | 65 |
10 | DESSEL Cyril | 63 |
12 | PAURIOL Rémi | 68 |
13 | LANCASTER Brett | 78 |
14 | VIGANÒ Davide | 67 |
15 | DRUJON Mathieu | 75 |
16 | NAVARRO Daniel | 60 |
17 | EFIMKIN Vladimir | 67 |
18 | GESLIN Anthony | 68 |
19 | BRAJKOVIČ Janez | 60 |
20 | VANENDERT Jelle | 62 |
21 | BOTCHAROV Alexandre | 54 |
22 | MORENO Daniel | 59 |
24 | LÖFKVIST Thomas | 70 |
25 | URÁN Rigoberto | 63 |