Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
De Gendt
1
73 kgValverde
2
61 kgYates
3
58 kgMatthews
4
72 kgBernal
5
60 kgSchachmann
6
71 kgMartin
7
59 kgImpey
8
72 kgBole
9
69 kgDe Clercq
10
67 kgLammertink
11
61 kgČerný
12
75 kgQuintana
13
58 kgMinnaard
14
65 kgCuadros
15
67 kgSamitier
16
63 kgKruijswijk
17
63 kgMaté
18
68 kgWeening
19
68 kgGregaard
20
66 kgCabedo
21
53 kg
1
73 kgValverde
2
61 kgYates
3
58 kgMatthews
4
72 kgBernal
5
60 kgSchachmann
6
71 kgMartin
7
59 kgImpey
8
72 kgBole
9
69 kgDe Clercq
10
67 kgLammertink
11
61 kgČerný
12
75 kgQuintana
13
58 kgMinnaard
14
65 kgCuadros
15
67 kgSamitier
16
63 kgKruijswijk
17
63 kgMaté
18
68 kgWeening
19
68 kgGregaard
20
66 kgCabedo
21
53 kg
Weight (KG) →
Result →
75
53
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DE GENDT Thomas | 73 |
2 | VALVERDE Alejandro | 61 |
3 | YATES Adam | 58 |
4 | MATTHEWS Michael | 72 |
5 | BERNAL Egan | 60 |
6 | SCHACHMANN Maximilian | 71 |
7 | MARTIN Dan | 59 |
8 | IMPEY Daryl | 72 |
9 | BOLE Grega | 69 |
10 | DE CLERCQ Bart | 67 |
11 | LAMMERTINK Maurits | 61 |
12 | ČERNÝ Josef | 75 |
13 | QUINTANA Nairo | 58 |
14 | MINNAARD Marco | 65 |
15 | CUADROS Álvaro | 67 |
16 | SAMITIER Sergio | 63 |
17 | KRUIJSWIJK Steven | 63 |
18 | MATÉ Luis Ángel | 68 |
19 | WEENING Pieter | 68 |
20 | GREGAARD Jonas | 66 |
21 | CABEDO Óscar | 53 |