Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Chaves
1
55 kgYates
2
58 kgDennis
3
72 kgBerhane
4
66 kgWoods
5
62 kgSánchez
6
73 kgCavagna
7
78 kgKamp
8
74 kgValverde
9
61 kgThomas
10
71 kgAlmeida
11
63 kgRochas
12
51 kgMoniquet
13
61 kgDe Gendt
14
73 kgGalván
15
69 kgLópez
16
60 kgTaaramäe
17
73 kgCamargo
18
65 kgJanse van Rensburg
19
74 kgSamitier
20
63 kgChampion
21
66 kg
1
55 kgYates
2
58 kgDennis
3
72 kgBerhane
4
66 kgWoods
5
62 kgSánchez
6
73 kgCavagna
7
78 kgKamp
8
74 kgValverde
9
61 kgThomas
10
71 kgAlmeida
11
63 kgRochas
12
51 kgMoniquet
13
61 kgDe Gendt
14
73 kgGalván
15
69 kgLópez
16
60 kgTaaramäe
17
73 kgCamargo
18
65 kgJanse van Rensburg
19
74 kgSamitier
20
63 kgChampion
21
66 kg
Weight (KG) →
Result →
78
51
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | CHAVES Esteban | 55 |
2 | YATES Adam | 58 |
3 | DENNIS Rohan | 72 |
4 | BERHANE Natnael | 66 |
5 | WOODS Michael | 62 |
6 | SÁNCHEZ Luis León | 73 |
7 | CAVAGNA Rémi | 78 |
8 | KAMP Alexander | 74 |
9 | VALVERDE Alejandro | 61 |
10 | THOMAS Geraint | 71 |
11 | ALMEIDA João | 63 |
12 | ROCHAS Rémy | 51 |
13 | MONIQUET Sylvain | 61 |
14 | DE GENDT Thomas | 73 |
15 | GALVÁN Francisco | 69 |
16 | LÓPEZ Juan Pedro | 60 |
17 | TAARAMÄE Rein | 73 |
18 | CAMARGO Diego Andrés | 65 |
19 | JANSE VAN RENSBURG Reinardt | 74 |
20 | SAMITIER Sergio | 63 |
21 | CHAMPION Thomas | 66 |