Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Roglič
1
65 kgEvenepoel
2
61 kgCiccone
3
58 kgGroves
4
76 kgPetilli
5
65 kgCoquard
6
59 kgAdrià
7
64 kgHerregodts
8
70 kgMartin
9
55 kgStrong
10
63 kgSchelling
11
66 kgBol
12
71 kgCarapaz
13
62 kgOnley
14
62 kgTræen
15
63 kgCarr
16
66 kgde la Cruz
17
66 kgPeters
18
72 kgJuul-Jensen
20
73 kgCepeda
21
61 kgEg
22
60 kgDe Marchi
23
65 kg
1
65 kgEvenepoel
2
61 kgCiccone
3
58 kgGroves
4
76 kgPetilli
5
65 kgCoquard
6
59 kgAdrià
7
64 kgHerregodts
8
70 kgMartin
9
55 kgStrong
10
63 kgSchelling
11
66 kgBol
12
71 kgCarapaz
13
62 kgOnley
14
62 kgTræen
15
63 kgCarr
16
66 kgde la Cruz
17
66 kgPeters
18
72 kgJuul-Jensen
20
73 kgCepeda
21
61 kgEg
22
60 kgDe Marchi
23
65 kg
Weight (KG) →
Result →
76
55
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | ROGLIČ Primož | 65 |
2 | EVENEPOEL Remco | 61 |
3 | CICCONE Giulio | 58 |
4 | GROVES Kaden | 76 |
5 | PETILLI Simone | 65 |
6 | COQUARD Bryan | 59 |
7 | ADRIÀ Roger | 64 |
8 | HERREGODTS Rune | 70 |
9 | MARTIN Guillaume | 55 |
10 | STRONG Corbin | 63 |
11 | SCHELLING Ide | 66 |
12 | BOL Jetse | 71 |
13 | CARAPAZ Richard | 62 |
14 | ONLEY Oscar | 62 |
15 | TRÆEN Torstein | 63 |
16 | CARR Simon | 66 |
17 | DE LA CRUZ David | 66 |
18 | PETERS Nans | 72 |
20 | JUUL-JENSEN Christopher | 73 |
21 | CEPEDA Jefferson Alveiro | 61 |
22 | EG Niklas | 60 |
23 | DE MARCHI Alessandro | 65 |