Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Martinez
1
52 kgTiberi
2
62 kgKulset
3
58 kgParet-Peintre
4
52 kgCastrillo
5
74 kgRafferty
6
65 kgLecerf
7
54 kgSteinhauser
8
65 kgZambanini
9
62 kgGutiérrez
10
58 kgLaurance
11
63 kgWandahl
12
61 kgBaudin
13
64 kgBusatto
14
62 kgThompson
15
66 kgUmba
16
58 kgVerre
17
59 kgHuby
18
56 kgUhlig
19
69 kgFernández
20
57 kg
1
52 kgTiberi
2
62 kgKulset
3
58 kgParet-Peintre
4
52 kgCastrillo
5
74 kgRafferty
6
65 kgLecerf
7
54 kgSteinhauser
8
65 kgZambanini
9
62 kgGutiérrez
10
58 kgLaurance
11
63 kgWandahl
12
61 kgBaudin
13
64 kgBusatto
14
62 kgThompson
15
66 kgUmba
16
58 kgVerre
17
59 kgHuby
18
56 kgUhlig
19
69 kgFernández
20
57 kg
Weight (KG) →
Result →
74
52
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | MARTINEZ Lenny | 52 |
2 | TIBERI Antonio | 62 |
3 | KULSET Johannes | 58 |
4 | PARET-PEINTRE Valentin | 52 |
5 | CASTRILLO Pablo | 74 |
6 | RAFFERTY Darren | 65 |
7 | LECERF Junior | 54 |
8 | STEINHAUSER Georg | 65 |
9 | ZAMBANINI Edoardo | 62 |
10 | GUTIÉRREZ Jorge | 58 |
11 | LAURANCE Axel | 63 |
12 | WANDAHL Frederik | 61 |
13 | BAUDIN Alex | 64 |
14 | BUSATTO Francesco | 62 |
15 | THOMPSON Reuben | 66 |
16 | UMBA Santiago | 58 |
17 | VERRE Alessandro | 59 |
18 | HUBY Antoine | 56 |
19 | UHLIG Henri | 69 |
20 | FERNÁNDEZ Samuel | 57 |