Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 31
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Brennan
1
68 kgAyuso
2
65 kgVernon
3
74 kgGroves
4
76 kgRoglič
5
65 kgWenzel
6
68 kgCastellon
7
55 kgUriarte
8
67 kgvan der Tuuk
9
64 kgJohnston
10
55 kgLanda
11
61 kgMas
13
61 kgGermani
14
62 kgBouchard
15
63 kgLaurance
16
63 kgNovak
17
70 kgDíaz
18
64 kgMolenaar
19
63 kgTratnik
20
67 kg
1
68 kgAyuso
2
65 kgVernon
3
74 kgGroves
4
76 kgRoglič
5
65 kgWenzel
6
68 kgCastellon
7
55 kgUriarte
8
67 kgvan der Tuuk
9
64 kgJohnston
10
55 kgLanda
11
61 kgMas
13
61 kgGermani
14
62 kgBouchard
15
63 kgLaurance
16
63 kgNovak
17
70 kgDíaz
18
64 kgMolenaar
19
63 kgTratnik
20
67 kg
Weight (KG) →
Result →
76
55
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BRENNAN Matthew | 68 |
2 | AYUSO Juan | 65 |
3 | VERNON Ethan | 74 |
4 | GROVES Kaden | 76 |
5 | ROGLIČ Primož | 65 |
6 | WENZEL Mats | 68 |
7 | CASTELLON Jan | 55 |
8 | URIARTE Diego | 67 |
9 | VAN DER TUUK Danny | 64 |
10 | JOHNSTON Calum | 55 |
11 | LANDA Mikel | 61 |
13 | MAS Enric | 61 |
14 | GERMANI Lorenzo | 62 |
15 | BOUCHARD Geoffrey | 63 |
16 | LAURANCE Axel | 63 |
17 | NOVAK Domen | 70 |
18 | DÍAZ José Manuel | 64 |
19 | MOLENAAR Alex | 63 |
20 | TRATNIK Jan | 67 |