Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Roglič
1
65 kgAyuso
2
65 kgBrennan
3
68 kgVernon
4
74 kgUriarte
5
67 kgMas
6
61 kgWenzel
7
68 kgCastellon
8
55 kgVan Der Tuuk
9
64 kgJohnston
10
55 kgLanda
11
61 kgLaurance
13
63 kgBouchard
14
63 kgGermani
15
62 kgvan den Broek
16
70 kgNovak
17
70 kgDíaz
18
64 kgStaune-Mittet
19
67 kgTratnik
20
67 kgMolenaar
21
63 kg
1
65 kgAyuso
2
65 kgBrennan
3
68 kgVernon
4
74 kgUriarte
5
67 kgMas
6
61 kgWenzel
7
68 kgCastellon
8
55 kgVan Der Tuuk
9
64 kgJohnston
10
55 kgLanda
11
61 kgLaurance
13
63 kgBouchard
14
63 kgGermani
15
62 kgvan den Broek
16
70 kgNovak
17
70 kgDíaz
18
64 kgStaune-Mittet
19
67 kgTratnik
20
67 kgMolenaar
21
63 kg
Weight (KG) →
Result →
74
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | ROGLIČ Primož | 65 |
2 | AYUSO Juan | 65 |
3 | BRENNAN Matthew | 68 |
4 | VERNON Ethan | 74 |
5 | URIARTE Diego | 67 |
6 | MAS Enric | 61 |
7 | WENZEL Mats | 68 |
8 | CASTELLON Jan | 55 |
9 | VAN DER TUUK Danny | 64 |
10 | JOHNSTON Calum | 55 |
11 | LANDA Mikel | 61 |
13 | LAURANCE Axel | 63 |
14 | BOUCHARD Geoffrey | 63 |
15 | GERMANI Lorenzo | 62 |
16 | VAN DEN BROEK Frank | 70 |
17 | NOVAK Domen | 70 |
18 | DÍAZ José Manuel | 64 |
19 | STAUNE-MITTET Johannes | 67 |
20 | TRATNIK Jan | 67 |
21 | MOLENAAR Alex | 63 |