Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Daniel
1
74 kgSousa
2
59 kgSerov
3
77 kgCardoso
5
70 kgFonte
6
60 kgSaramotins
7
75 kgCiolek
8
75 kgCésar Veloso
9
69 kgSilvestre
10
78 kgPinto
11
58 kgBrôco
13
66 kgPiechele
14
71 kgRibeiro
15
59 kgDomagalski
16
77 kgBrandão
17
64 kgThomson
21
75 kgHollenstein
23
80 kgBenfatto
24
71 kgCarvalho
25
62 kgvan Zandbeek
27
72 kgWyss
28
63 kgPoux
29
70 kgSilva
30
71 kg
1
74 kgSousa
2
59 kgSerov
3
77 kgCardoso
5
70 kgFonte
6
60 kgSaramotins
7
75 kgCiolek
8
75 kgCésar Veloso
9
69 kgSilvestre
10
78 kgPinto
11
58 kgBrôco
13
66 kgPiechele
14
71 kgRibeiro
15
59 kgDomagalski
16
77 kgBrandão
17
64 kgThomson
21
75 kgHollenstein
23
80 kgBenfatto
24
71 kgCarvalho
25
62 kgvan Zandbeek
27
72 kgWyss
28
63 kgPoux
29
70 kgSilva
30
71 kg
Weight (KG) →
Result →
80
58
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | DANIEL Maxime | 74 |
2 | SOUSA Rui | 59 |
3 | SEROV Alexander | 77 |
5 | CARDOSO Manuel Antonio Leal | 70 |
6 | FONTE César | 60 |
7 | SARAMOTINS Aleksejs | 75 |
8 | CIOLEK Gerald | 75 |
9 | CÉSAR VELOSO Gustavo | 69 |
10 | SILVESTRE Fábio | 78 |
11 | PINTO Edgar | 58 |
13 | BRÔCO Hernâni | 66 |
14 | PIECHELE Andrea | 71 |
15 | RIBEIRO Nuno | 59 |
16 | DOMAGALSKI Karol | 77 |
17 | BRANDÃO Joni | 64 |
21 | THOMSON Jay Robert | 75 |
23 | HOLLENSTEIN Reto | 80 |
24 | BENFATTO Marco | 71 |
25 | CARVALHO Antonio | 62 |
27 | VAN ZANDBEEK Ronan | 72 |
28 | WYSS Marcel | 63 |
29 | POUX Paul | 70 |
30 | SILVA Luis Filipe | 71 |