Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 50
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Mestre
1
65 kgGonçalves
2
70 kgViganò
3
67 kgGavazzi
4
65 kgCésar Veloso
5
69 kgGarcía de Mateos
6
68 kgCaldeira
7
76 kgClarke
8
81 kgPhelan
9
73 kgNocentini
10
60 kgEzquerra
11
68 kgLuchshenko
14
63 kgEarle
15
70 kgVilela
16
59 kgAfonso
17
56 kgYssaad
18
69 kgSilva
19
59 kgde la Fuente
20
67 kgTaliani
21
60 kgMannion
22
58 kgMeireles
23
62 kg
1
65 kgGonçalves
2
70 kgViganò
3
67 kgGavazzi
4
65 kgCésar Veloso
5
69 kgGarcía de Mateos
6
68 kgCaldeira
7
76 kgClarke
8
81 kgPhelan
9
73 kgNocentini
10
60 kgEzquerra
11
68 kgLuchshenko
14
63 kgEarle
15
70 kgVilela
16
59 kgAfonso
17
56 kgYssaad
18
69 kgSilva
19
59 kgde la Fuente
20
67 kgTaliani
21
60 kgMannion
22
58 kgMeireles
23
62 kg
Weight (KG) →
Result →
81
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | MESTRE Daniel | 65 |
2 | GONÇALVES José | 70 |
3 | VIGANÒ Davide | 67 |
4 | GAVAZZI Francesco | 65 |
5 | CÉSAR VELOSO Gustavo | 69 |
6 | GARCÍA DE MATEOS Vicente | 68 |
7 | CALDEIRA Samuel José | 76 |
8 | CLARKE Will | 81 |
9 | PHELAN Adam | 73 |
10 | NOCENTINI Rinaldo | 60 |
11 | EZQUERRA Jesús | 68 |
14 | LUCHSHENKO Sergey | 63 |
15 | EARLE Nathan | 70 |
16 | VILELA Ricardo | 59 |
17 | AFONSO Luis | 56 |
18 | YSSAAD Yannis | 69 |
19 | SILVA Daniel | 59 |
20 | DE LA FUENTE David | 67 |
21 | TALIANI Alessio | 60 |
22 | MANNION Gavin | 58 |
23 | MEIRELES Nuno | 62 |