Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 30
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Reyes
1
55 kgDunbar
2
57 kgFigueiredo
3
56 kgSilva
4
66 kgVilela
5
59 kgMrożek
7
66 kgPowless
8
67 kgMarque
9
68 kgAmador
10
73 kgVangstad
11
70 kgHuffman
13
71 kgCarapaz
14
62 kgCosta
15
61 kgSchultz
16
68 kgPedrero
17
60 kgTietema
18
74 kgJamieson
19
75 kgVorobyev
20
74 kg
1
55 kgDunbar
2
57 kgFigueiredo
3
56 kgSilva
4
66 kgVilela
5
59 kgMrożek
7
66 kgPowless
8
67 kgMarque
9
68 kgAmador
10
73 kgVangstad
11
70 kgHuffman
13
71 kgCarapaz
14
62 kgCosta
15
61 kgSchultz
16
68 kgPedrero
17
60 kgTietema
18
74 kgJamieson
19
75 kgVorobyev
20
74 kg
Weight (KG) →
Result →
75
55
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | REYES Aldemar | 55 |
2 | DUNBAR Eddie | 57 |
3 | FIGUEIREDO Frederico | 56 |
4 | SILVA Joaquim | 66 |
5 | VILELA Ricardo | 59 |
7 | MROŻEK Marcin | 66 |
8 | POWLESS Neilson | 67 |
9 | MARQUE Alejandro Manuel | 68 |
10 | AMADOR Andrey | 73 |
11 | VANGSTAD Andreas | 70 |
13 | HUFFMAN Evan | 71 |
14 | CARAPAZ Richard | 62 |
15 | COSTA Adrien | 61 |
16 | SCHULTZ Nick | 68 |
17 | PEDRERO Antonio | 60 |
18 | TIETEMA Bas | 74 |
19 | JAMIESON Adam | 75 |
20 | VOROBYEV Anton | 74 |