Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 23
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Foss
1
74 kgHiguita
2
57 kgNovikov
3
65 kgBritton
6
69 kgWright
7
75 kgTulett
8
56 kgJenner
10
64 kgDonovan
11
70 kgSleen
12
65 kgFlynn
15
67 kgFouché
16
71 kgLopes
19
68 kgSmirnov
20
69 kgSilva
21
60 kgPinheiro
22
71 kgSousa
24
59 kgAraujo
25
68 kgBrown
28
68 kgO'Loughlin
31
72 kgVernon
33
74 kgSalgado
36
65 kgTidball
39
70 kgPinto
40
68 kgKulset
41
68 kgScheulen
43
73 kg
1
74 kgHiguita
2
57 kgNovikov
3
65 kgBritton
6
69 kgWright
7
75 kgTulett
8
56 kgJenner
10
64 kgDonovan
11
70 kgSleen
12
65 kgFlynn
15
67 kgFouché
16
71 kgLopes
19
68 kgSmirnov
20
69 kgSilva
21
60 kgPinheiro
22
71 kgSousa
24
59 kgAraujo
25
68 kgBrown
28
68 kgO'Loughlin
31
72 kgVernon
33
74 kgSalgado
36
65 kgTidball
39
70 kgPinto
40
68 kgKulset
41
68 kgScheulen
43
73 kg
Weight (KG) →
Result →
75
56
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | FOSS Tobias | 74 |
2 | HIGUITA Sergio | 57 |
3 | NOVIKOV Savva | 65 |
6 | BRITTON Rhys | 69 |
7 | WRIGHT Fred | 75 |
8 | TULETT Daniel | 56 |
10 | JENNER Samuel | 64 |
11 | DONOVAN Mark | 70 |
12 | SLEEN Torjus | 65 |
15 | FLYNN Sean | 67 |
16 | FOUCHÉ James | 71 |
19 | LOPES Pedro Miguel | 68 |
20 | SMIRNOV Aleksandr | 69 |
21 | SILVA Afonso | 60 |
22 | PINHEIRO Ivo | 71 |
24 | SOUSA José | 59 |
25 | ARAUJO Bruno | 68 |
28 | BROWN Jim | 68 |
31 | O'LOUGHLIN Michael | 72 |
33 | VERNON Ethan | 74 |
36 | SALGADO João | 65 |
39 | TIDBALL William | 70 |
40 | PINTO Pedro | 68 |
41 | KULSET Sindre | 68 |
43 | SCHEULEN Marvin | 73 |