Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Petacchi
1
70 kgEisel
2
74 kgVaitkus
3
75 kgHaselbacher
4
69 kgGuidi
5
73 kgKopp
6
68 kgLequatre
7
64 kgRebellin
8
63 kgCasper
9
69 kgChavanel
10
77 kgPollack
11
77 kgGilbert
12
75 kgSentjens
13
75 kgvan Dijk
14
74 kgMachado
18
63 kgZanotti
20
70 kgWeylandt
21
72 kgStubbe
22
66 kgBoom
23
75 kgUrtasun
24
69 kgCoenen
25
67 kg
1
70 kgEisel
2
74 kgVaitkus
3
75 kgHaselbacher
4
69 kgGuidi
5
73 kgKopp
6
68 kgLequatre
7
64 kgRebellin
8
63 kgCasper
9
69 kgChavanel
10
77 kgPollack
11
77 kgGilbert
12
75 kgSentjens
13
75 kgvan Dijk
14
74 kgMachado
18
63 kgZanotti
20
70 kgWeylandt
21
72 kgStubbe
22
66 kgBoom
23
75 kgUrtasun
24
69 kgCoenen
25
67 kg
Weight (KG) →
Result →
77
63
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | PETACCHI Alessandro | 70 |
2 | EISEL Bernhard | 74 |
3 | VAITKUS Tomas | 75 |
4 | HASELBACHER René | 69 |
5 | GUIDI Fabrizio | 73 |
6 | KOPP David | 68 |
7 | LEQUATRE Geoffroy | 64 |
8 | REBELLIN Davide | 63 |
9 | CASPER Jimmy | 69 |
10 | CHAVANEL Sébastien | 77 |
11 | POLLACK Olaf | 77 |
12 | GILBERT Philippe | 75 |
13 | SENTJENS Roy | 75 |
14 | VAN DIJK Stefan | 74 |
18 | MACHADO Tiago | 63 |
20 | ZANOTTI Marco | 70 |
21 | WEYLANDT Wouter | 72 |
22 | STUBBE Tom | 66 |
23 | BOOM Lars | 75 |
24 | URTASUN Pablo | 69 |
25 | COENEN Johan | 67 |