Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 24
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Gonçalves
2
70 kgPorte
4
62 kgMachado
5
63 kgBakelants
6
67 kgCosta
7
69 kgWiggins
8
76 kgHoogerland
9
65 kgVan Avermaet
10
74 kgVanspeybrouck
11
76 kgVan Hecke
12
69 kgTrentin
13
74 kgAlarcón
14
72 kgPoels
15
66 kgLeukemans
16
67 kgLöfkvist
17
70 kgMestre
18
58 kgBurghardt
19
75 kgRiblon
20
65 kgCherel
21
65 kgNordhaug
22
63 kg
2
70 kgPorte
4
62 kgMachado
5
63 kgBakelants
6
67 kgCosta
7
69 kgWiggins
8
76 kgHoogerland
9
65 kgVan Avermaet
10
74 kgVanspeybrouck
11
76 kgVan Hecke
12
69 kgTrentin
13
74 kgAlarcón
14
72 kgPoels
15
66 kgLeukemans
16
67 kgLöfkvist
17
70 kgMestre
18
58 kgBurghardt
19
75 kgRiblon
20
65 kgCherel
21
65 kgNordhaug
22
63 kg
Weight (KG) →
Result →
76
58
2
22
# | Rider | Weight (KG) |
---|---|---|
2 | GONÇALVES José | 70 |
4 | PORTE Richie | 62 |
5 | MACHADO Tiago | 63 |
6 | BAKELANTS Jan | 67 |
7 | COSTA Rui | 69 |
8 | WIGGINS Bradley | 76 |
9 | HOOGERLAND Johnny | 65 |
10 | VAN AVERMAET Greg | 74 |
11 | VANSPEYBROUCK Pieter | 76 |
12 | VAN HECKE Preben | 69 |
13 | TRENTIN Matteo | 74 |
14 | ALARCÓN Raúl | 72 |
15 | POELS Wout | 66 |
16 | LEUKEMANS Björn | 67 |
17 | LÖFKVIST Thomas | 70 |
18 | MESTRE Ricardo | 58 |
19 | BURGHARDT Marcus | 75 |
20 | RIBLON Christophe | 65 |
21 | CHEREL Mikaël | 65 |
22 | NORDHAUG Lars Petter | 63 |