Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 10
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Porte
1
62 kgMalacarne
2
63 kgThomas
3
71 kgKwiatkowski
4
68 kgMalori
5
68 kgIzagirre
6
60 kgŠtybar
7
68 kgSieberg
8
80 kgLammertink
9
61 kgTaaramäe
10
73 kgGallopin
11
69 kgBrandão
12
64 kgSchillinger
13
72 kgWoods
14
62 kgTxoperena
15
67 kgBenta
16
60 kgBalykin
17
68 kg
1
62 kgMalacarne
2
63 kgThomas
3
71 kgKwiatkowski
4
68 kgMalori
5
68 kgIzagirre
6
60 kgŠtybar
7
68 kgSieberg
8
80 kgLammertink
9
61 kgTaaramäe
10
73 kgGallopin
11
69 kgBrandão
12
64 kgSchillinger
13
72 kgWoods
14
62 kgTxoperena
15
67 kgBenta
16
60 kgBalykin
17
68 kg
Weight (KG) →
Result →
80
60
1
17
# | Rider | Weight (KG) |
---|---|---|
1 | PORTE Richie | 62 |
2 | MALACARNE Davide | 63 |
3 | THOMAS Geraint | 71 |
4 | KWIATKOWSKI Michał | 68 |
5 | MALORI Adriano | 68 |
6 | IZAGIRRE Ion | 60 |
7 | ŠTYBAR Zdeněk | 68 |
8 | SIEBERG Marcel | 80 |
9 | LAMMERTINK Maurits | 61 |
10 | TAARAMÄE Rein | 73 |
11 | GALLOPIN Tony | 69 |
12 | BRANDÃO Joni | 64 |
13 | SCHILLINGER Andreas | 72 |
14 | WOODS Michael | 62 |
15 | TXOPERENA Beñat | 67 |
16 | BENTA João | 60 |
17 | BALYKIN Ivan | 68 |