Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Declercq
1
78 kgPoels
2
66 kgPogačar
3
66 kgAntunes
4
58 kgGarcía de Mateos
5
68 kgRibeiro
6
63 kgMas
7
61 kgŠtybar
8
68 kgKüng
9
83 kgKoch
10
75 kgPaulinho
11
75 kgLourenço
12
67 kgKragh Andersen
13
73 kgOomen
14
65 kgDe Buyst
15
72 kgZoidl
16
63 kgFernandes
17
63 kgWürtz Schmidt
18
70 kgSilva
19
59 kgRodrigues
20
60 kgPolitt
21
80 kgvan der Hoorn
22
73 kg
1
78 kgPoels
2
66 kgPogačar
3
66 kgAntunes
4
58 kgGarcía de Mateos
5
68 kgRibeiro
6
63 kgMas
7
61 kgŠtybar
8
68 kgKüng
9
83 kgKoch
10
75 kgPaulinho
11
75 kgLourenço
12
67 kgKragh Andersen
13
73 kgOomen
14
65 kgDe Buyst
15
72 kgZoidl
16
63 kgFernandes
17
63 kgWürtz Schmidt
18
70 kgSilva
19
59 kgRodrigues
20
60 kgPolitt
21
80 kgvan der Hoorn
22
73 kg
Weight (KG) →
Result →
83
58
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DECLERCQ Tim | 78 |
2 | POELS Wout | 66 |
3 | POGAČAR Tadej | 66 |
4 | ANTUNES Amaro | 58 |
5 | GARCÍA DE MATEOS Vicente | 68 |
6 | RIBEIRO David | 63 |
7 | MAS Enric | 61 |
8 | ŠTYBAR Zdeněk | 68 |
9 | KÜNG Stefan | 83 |
10 | KOCH Jonas | 75 |
11 | PAULINHO Pedro | 75 |
12 | LOURENÇO Rafael | 67 |
13 | KRAGH ANDERSEN Søren | 73 |
14 | OOMEN Sam | 65 |
15 | DE BUYST Jasper | 72 |
16 | ZOIDL Riccardo | 63 |
17 | FERNANDES Luís | 63 |
18 | WÜRTZ SCHMIDT Mads | 70 |
19 | SILVA Bruno | 59 |
20 | RODRIGUES João | 60 |
21 | POLITT Nils | 80 |
22 | VAN DER HOORN Taco | 73 |